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ABSTRACT
In exploratory data analysis, analysts often have a need to identify
histograms that possess a specific distribution, among a large class
of candidate histograms, e.g., find countries whose income distri-
bution is most similar to that of Greece. This distribution could
be a new one that the user is curious about, or a known distri-
bution from an existing histogram visualization. At present, this
process of identification is brute-force, requiring the manual gener-
ation and evaluation of a large number of histograms. We present
FastMatch: an end-to-end approach for interactively retrieving the
histogram visualizations most similar to a user-specified target, from
a large collection of histograms. The primary technical contribu-
tion underlying FastMatch is a probabilistic algorithm, HistSim, a
theoretically sound sampling-based approach to identify the top-k
closest histograms under ℓ1 distance. While HistSim can be used
independently, within FastMatch we couple HistSim with a novel
system architecture that is aware of practical considerations, em-
ploying asynchronous block-based sampling policies, building on
lightweight sampling engines developed in recent work [47]. Fast-
Match obtains near-perfect accuracy with up to 35× speedup over
approaches that do not use sampling on several real-world datasets.

1. INTRODUCTION
In exploratory data analysis, analysts often generate and peruse a

large number of visualizations to identify those that match desired
criteria. This process of iterative “generate and test” occupies a
large part of visual data analysis [13, 33, 62], and is often cumber-
some and time consuming, especially on very large datasets that are
increasingly the norm. This process ends up impeding interaction,
preventing exploration, and delaying the extraction of insights.
Example 1: Census Data Exploration. Alice is exploring a census
dataset consisting of hundreds of millions of tuples, with attributes
such as gender, occupation, nationality, ethnicity, religion, adjusted
income, net assets, and so on. In particular, she is interested in
understanding how applying various filters impacts the relative dis-
tribution of tuples with different attribute values. She might ask
questions like Q1: Which countries have similar distributions of
wealth to that of Greece? Q2: In the United States, which pro-
fessions have an ethnicity distribution similar to the profession of
doctor? Q3: Which (nationality, religion) pairs have a similar dis-
tribution of number of children to Christian families in France?
Example 2: Taxi Data Exploration. Bob is exploring the distribu-
tion of taxi trip times originating from various locations around
Manhattan. Specifically, he plots a histogram showing the dis-
tribution of taxi pickup times for trips originating from various
locations. As he varies the location, he examines how the his-
togram changes, and he notices that choosing the location of a pop-
ular nightclub skews the distribution of pickup times heavily in the

range of 3am to 5am. He wonders Q4: Where are the other lo-
cations around Manhattan that have similar distributions of pickup
times? Q5: Do they all have nightclubs, or are there different rea-
sons for the late-night pickups?
Example 3: Sales Data Exploration. Carol has the complete history
of all sales at a large online shopping website. Since users must en-
ter birthdays in order to create accounts, she is able to plot the age
distribution of purchasers for any given product. To enhance the
website’s recommendation engine, she is considering recommend-
ing products with similar purchaser age distributions. To test the
merit of this idea, she first wishes to perform a series of queries of
the form Q6: Which products were purchased by users with ages
most closely following the distribution for a certain product—a par-
ticular brand of shoes, or a particular book, for example? Carol
wishes to perform this query for a few test products before inte-
grating this feature into the recommendation pipeline.

These cases represent scenarios that often arise in exploratory data
analysis—finding matches to a specific distribution. The focus of
this paper is to develop techniques for rapidly exploring a large
class of histograms to find those that match a user-specified target.

Referring to Q1 in the first example,a typical workflow used by
Alice may be the following: first, pick a country. Generate the cor-
responding histogram. This could be done either using a language
like R, Python, or Javascript, with the visualization generated in
ggplot [73] or D3 [15], or using interactions in a visualization plat-
form like Tableau [70]. Does the visualization look similar to that
of Greece? If not, pick another, generate it, and repeat. Else, record
it, pick another, generate it, and repeat. If only a select few coun-
tries have similar distributions, she may spend a huge amount of
time sifting through her data, or may simply give up early.

The Need for Approximation. Even if Alice generates all of the
candidate histograms (i.e., one for each country) in a single pass,
programmatically selecting the closest match to her target (i.e., the
Greece histogram), this could take unacceptably long. If the dataset
is tens of gigabytes and every tuple in her census dataset contributes
to some histogram, then any exact method must necessarily pro-
cess tens of gigabytes—on a typical workstation, this can take tens
of seconds even for in-memory data. Recent work suggests that
latencies greater than 500ms cause significant frustration for end-
users and lead them to test fewer hypotheses and potentially iden-
tify fewer insights [54]. Thus, in this work, we explore approximate
techniques that can return matching histogram visualizations with
accuracy guarantees, but much faster.

One tempting approach is to employ approximation using pre-
computed samples [7, 6, 5, 10, 31, 28], or pre-computed sketches
or other summaries [18, 60, 77]. Unfortunately, in an interactive ex-
ploration setting, pre-computed samples or summaries are not help-
ful, since the workload is unpredictable and changes rapidly, with
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more than half of the queries issued one week completely absent in
the following week, and more than 90% of the queries issued one
week completely absent a month later [58]. In our case, based on
the results for one matching query, Alice may be prompted to ex-
plore different (and arbitrary) slices of the same data, which can be
exponential in the number of attributes in the dataset. Instead, we
materialize samples on-the-fly, which doesn’t suffer from the same
limitations and has been employed for generating approximate vi-
sualizations incrementally [64], and while preserving ordering and
perceptual guarantees [46, 8]. To the best of our knowledge, how-
ever, on-demand approximate sampling techniques have not been
applied to the problem of evaluating a large number of visualiza-
tions for matches in parallel.

Key Research Challenges. In developing an approximation-based
approach for rapid histogram matching we immediately encounter
a number of theoretical and practical challenges.
1. Quantifying Importance. To benefit from approximation, we
need to be able to quantify which samples are “important” to fa-
cilitate progress towards termination. It is not clear how to as-
sess this importance: at one extreme, it may be preferable to sam-
ple more from candidate histograms that are more “uncertain”, but
these histograms may already be known to be rather far away from
the target. Another approach is to sample more from candidate
histograms at the “boundary” of top-k, but if these histograms are
more “certain”, refining them further may be useless. Another chal-
lenge is when we quantify the importance of samples: one approach
would be to reassess importance every time new data become avail-
able, but this approach could be computationally costly.
2. Deciding to Terminate. Our algorithm needs to ascribe a con-
fidence in the correctness of partial results in order to determine
when it may safely terminate. This “confidence quantification” re-
quires performing a statistical test. If we perform this test too of-
ten, we spend a significant amount of time doing computation that
could be spent performing I/O, and we further lose statistical power
since we are performing more tests; if we do not do this test often
enough, we may end up taking many more samples than are neces-
sary to terminate.
3. Challenges with Storage Media. When performing sampling
from traditional storage media, the cost to fetch samples is locality-
dependent; truly random sampling is extremely expensive due to
random I/O, while sampling at the level of blocks is much more
efficient, but is less random.
4. Communication between Components. It is crucial for our over-
all system to not be bottlenecked on any component. In particu-
lar, the process of quantifying importance (via the sampling man-
ager) must not block the actual I/O performed; otherwise, the time
for execution may end up being greater than the time taken by
exact methods. As such, these components must proceed asyn-
chronously, while also minimizing communication across them.

Our Contributions. In this paper, we have developed an end-to-
end architecture for histogram matching, dubbed FastMatch, ad-
dressing the challenges identified above:
1. Importance Quantification Policies. We develop a sampling en-
gine that employs a simple and theoretically well-motivated cri-
terion for deciding whether processing particular portions of data
will allow for faster termination. Since the criterion is simple, it
is easy to update as we process new data, “understanding” when it
has seen enough data for some histogram, or when it needs to take
more data to distinguish histograms that are close to each other.
2. Termination Algorithm. We develop a statistics engine that re-
peatedly performs a lightweight “safe termination” test, based on
the idea of performing multiple hypothesis tests for which simul-

taneous rejection implies correctness of the results. Our statistics
engine further quantifies how often to run this test to ensure timely
termination without sacrificing too much statistical power.
3. Locality-aware Sampling. To better exploit locality of storage
media, FastMatch samples at the level of blocks, proceeding se-
quentially. To estimate the benefit of blocks, we leverage bitmap
indexes in a cache-conscious manner, evaluating multiple blocks
at a time in the same order as their layout in storage. Our tech-
nique minimizes the time required for the query output to satisfy
our probabilistic guarantees.
4. Decoupling Components. Our system decouples the overhead of
deciding which samples to take from the actual I/O used to read the
samples from storage. In particular, our sampling engine utilizes a
just-in-time lookahead technique that marks blocks for reading or
skipping while the I/O proceeds unhindered, in parallel.
Overall, we implement FastMatch within the context of a bitmap-
based sampling engine, which allows us to quickly determine whether
a given memory or disk block could contain samples matching ad-
hoc predicates. Such engines were found to effectively support ap-
proximate generation of visualizations in recent work [8, 46, 64].
We find that our approximation-based techniques working in tan-
dem with our novel systems components lead to speedups ranging
from 8× to over 35× over exact methods, and moreover, unlike
less-sophisticated variants of FastMatch, whose performance can
be highly data-dependent, FastMatch consistently brings latency
to near-interactive levels.

Related Work. To the best of our knowledge, there has been no
work on sampling to identify histograms that match user specifi-
cations. Sampling-based techniques have been applied to generate
visualizations that preserve visual properties [8, 46], and for incre-
mental generation of time-series and heat-maps [64]—all focusing
on the generation of a single visualization. Similarly, Pangloss [57]
employs approximation via the Sample+Seek approach [28] to gen-
erate a single visualization early, while minimizing error. One sys-
tem uses workload-aware indexes called “VisTrees” [29] to facil-
itate sampling for interactive generation of histograms without er-
ror guarantees. M4 uses rasterization without sampling to reduce
the dimensionality of a time-series visualization and generate it
faster [43]. SeeDB [71] recommends visualizations to help distin-
guish between two subsets of data while employing approximation.
However, their techniques are tailored to evaluating differences be-
tween pairs of visualizations (that share the same axes, while other
pairs do not share the same axes). In our case, we need to compare
one visualization versus others, all of which have the same axes and
have comparable distances, hence the techniques do not generalize.

Recent work has developed zenvisage [67], a visual exploration
tool, including operations that identify visualizations similar to a
target. However, to identify matches, zenvisage does not con-
sider sampling, and requires at least one complete pass through the
dataset. FastMatch was developed as a back-end with such inter-
faces in mind to support rapid discovery of relevant visualizations.

Outline. Section 2 articulates the formal problem of identifying
top-k closest histograms to a target. Section 3 introduces our Hist-
Sim algorithm for solving this problem, while Section 4 describes
the system architecture that implements this algorithm. In Sec-
tion 5 we perform an empirical evaluation on several real-world
datasets. After surveying additional related work in Section 6, we
describe several generalizations and extensions of our techniques
in Appendix A.

2. PROBLEM FORMULATION
In this section, we formalize the problem of identifying histograms

whose distributions match a reference.
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Symbol(s) Description
X,Z, VX , VZ , T x-axis attribute, candidate attribute, respective value sets, and relation over these attributes, used in histogram-generating queries (see Definition 1)

k, δ, ε, σ User-supplied parameters (number of matching histograms to retrieve, error probability upper bound, approximation error upper bound, selectivity
threshold (below which candidates may optionally be ignored)

q, ri, r
∗
i , (q̄, r̄i, r̄

∗
i ) Visual target, candidate i’s estimated (unstarred) and true (starred) histogram counts (normalized variants)

d(·, ·) Distance function, used to quantify visual distance (see Definition 2)

ni, n′
i, εi, δi, τi (τ∗

i ) Quantities specific to candidate i during HistSim run: number of samples taken, estimated samples needed (see Section 4), deviation bound (see
Definition 4), confidence upper bound on εi-deviation or rareness, and distance estimate from q (true distance from q), respectively

n∂
i , r∂i , τ∂

i

Quantities corresponding to samples taken in a specific round of HistSim stage 2: number of samples taken for candidate i in round, per-group
counts for candidate i for samples taken in round, corresponding distance estimates using the samples taken in round, respectively

M,A Set of matching histograms (see Definition 3) and non-pruned histograms, respectively, during a run of HistSim
Ni, N , m, f(·;N,Ni,m) Number of datapoints corresponding to candidate i, total number of datapoints, samples taken during stage 1, hypergeometric pdf

Table 1: Summary of notation.
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Figure 1: Example visual target and candidate histogram
2.1 Generation of Histograms

We start with a concrete example of the typical database query
an analyst might use to generate a histogram. Returning to our ex-
ample from Section 1, suppose an analyst is interested in studying
how population proportions vary across income brackets for vari-
ous countries around the world. Suppose she wishes to find coun-
tries with populations distributed across different income brackets
most similarly to a specific country, such as Greece. Consider the
following SQL query, where $COUNTRY is a variable:

SELECT income_bracket, COUNT(*) FROM census
WHERE country=$COUNTRY
GROUP BY income_bracket

This query returns a list of 7 (income bracket, count) pairs to the
analyst for a specific country. The analyst may then choose to vi-
sualize the results by plotting the counts versus different income
brackets in a histogram, i.e., a plot similar to the right side of Fig-
ure 1 (for Italy). Currently, the analyst may examine hundreds of
similar histograms, one for each country, comparing it to the one
for Greece, to manually identify ones that are similar.

In contrast, the goal of FastMatch is to perform this search
automatically and efficiently. Conceptually, FastMatch will iter-
ate over all possible values of country, generate the correspond-
ing histograms, and evaluate the similarity of its distribution (based
on some notion of similarity described subsequently) to the cor-
responding visualization for Greece. In actuality, FastMatch will
perform this search all at once, quickly pruning countries that are
either clearly close or far from the target.
Candidate Visualizations. Formally, we consider visualizations
as being generated as a result of histogram-generating queries:

DEFINITION 1. A histogram-generating query is a SQL query
of the following type:

SELECT X , COUNT(*) FROM T
WHERE Z = zi GROUP BY X

The table T and attributes X and Z form the query’s template.

For each concrete value zi of attribute Z specified in the query,
the results of the query—i.e., the grouped counts—can be repre-
sented in the form of a vector (r1, r2, . . . , rn), where n = |VX |,
the cardinality of the value set of attribute X . This n-tuple can then
be used to plot a histogram visualization—in this paper, when we
refer to a histogram or a visualization, we will be typically refer-
ring to such an n-tuple. For a given grouping attribute X and a

candidate attribute Z, we refer to the set of all visualizations gen-
erated by letting Z vary over its value set as the set of candidate
visualizations. We refer to each distinct value in the grouping at-
tribute X’s value set as a group. In our example, X corresponds to
income_bracket and Z corresponds to country.

For ease of exposition, we focus on candidate visualizations gen-
erated from queries according to Definition 1, having single cate-
gorical attributes for X and Z. Our methods are more general and
extend naturally to handle (i) predicates: additional predicates on
other attributes, (ii) multiple and complex Xs: additional grouping
(i.e., X) attributes, groups derived from binning real-values (as op-
posed to categorical X), along with groups derived from binning
multiple categorical X attribute values together (e.g., quarters in-
stead of individual months), and (iii) multiple and complex Zs: ad-
ditional candidate (i.e., Z) attributes, as well as candidate attribute
values derived from binning real values (as opposed to categorical
Z). The flexibility in specifying histogram-generating queries—
exponential in the number of attributes—makes it impossible for
us to precompute the results of all such queries.

Visualization Terminology. Our methods are agnostic to the par-
ticular method used to present visualizations. That is, analysts may
choose to present the results generated from queries of the form in
Definition 1 via line plots, heat maps, choropleths, and other visual-
ization types, as any of these may be specified by an ordered tuple
of real values and are thus permitted under our notion of a “can-
didate visualization”. We focus on bar charts of frequency counts
and histograms—these naturally capture aggregations over the cat-
egorical or binned quantitative grouping attribute X respectively.
Although a bar graph plot of frequency counts over a categorical
grouping attribute is not technically a histogram, which implies
that the grouping attribute is continuous, we loosely use the term
“histogram” to refer to both cases in a unified way.

Visual Target Specification. Given our specification of candidate
visualizations, a visual target is an n-tuple, denoted by q with en-
tries Q1, Q2, . . . , Qn, that we need to match the candidates with.
Returning to our flight delays example, q would refer to the vi-
sualization corresponding to Greece, with Q1 being the count of
individuals in the first income bracket, Q2 the count of individuals
in the second income bracket, and so on.

Samples. To estimate these candidate visualizations, we need to
take samples. In particular, for a given candidate i for some at-
tribute Z, a sample corresponds to a single tuple t with attribute
value Z = zi. The attribute value X = xj of t increments the jth
entry of the estimate ri for the candidate histogram.

Candidate Similarity. Given a set of candidate visualizations with
estimated vector representations {ri} such that the ith candidate is
generated by selecting on Z = zi, our problem hinges on finding
the candidate whose distribution is most “similar” to the visual tar-
get q specified by the analyst. For quantifying visual similarity, we
do not care about the absolute counts r1, r2, . . . , r|VX |, and instead
prefer to determine whether ri and q are close in a distributional
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sense. Using hats to denote normalized variants of ri and q, write

r̄i =
ri

1T ri
q̄ =

q

1Tq

With this notational convenience, we make our notion of similarity
explicit by defining candidate distance as follows:

DEFINITION 2. For candidate ri and visual predicate q, the
distance d(ri,q) between ri and q is defined as follows:

d(ri,q) = ||̄ri − q̄||1 = || ri
1T ri

− q

1Tq
||1

That is, after normalizing the candidate and target vectors so that
their respective components sum to 1 (and therefore correspond
to distributions), we take the ℓ1 distance between the two vectors.
When the target q is understood from context, we denote the dis-
tance between candidate ri and q by τi = d(ri,q).
The Need for Normalization. A natural question that readers may
have is why we chose to normalize each vector prior to taking
the distance between them. We do this because the goal of Fast-
Match is to find visualizations that have similar distributions, as
opposed to similar actual values. Returning to our example, if we
consider the population distribution of Greece across different in-
come brackets, and compare it to that of other countries, without
normalization, we will end up returning other countries with simi-
lar population counts in each bin—e.g., other countries with similar
overall populations—as opposed to those that have similar shape or
distribution. To see an illustration of this, consider Figure 3. The
overlaid histogram in goldenrod is identical to the blue one, but we
are unable to capture this without normalization.
Choice of Metric Post-Normalization. A similar metric, using
ℓ2 distance between normalized vectors (as opposed to ℓ1), has
been studied in prior work [71, 28] and even validated in a user
study in [71]. However, as observed in [12], the ℓ2 distance be-
tween distributions has the drawback that it could be small even
for distributions with disjoint support. The ℓ1 distance metric over
discrete probability distributions has a direct correspondence with
the traditional statistical distance metric known as total variation
distance [32] and does not suffer from this drawback.

Additionally, we sometimes observe that ℓ2 heavily penalizes
candidates with a small number of vector entries with large devia-
tions from each other, even when they are arguably closer visually
than those candidates closest in ℓ2. Consider Figure 2, which de-
picts histograms generated by one of the queries on a FLIGHTS
dataset we used in our experiments, corresponding to a histogram
of departure time. The target is the Chicago ORD airport, and we
are depicting the first non-ORD top-k histogram for both ℓ1 and
ℓ2 (i.e., the 2nd ranked histogram for both metrics), among all air-
ports. As one can see in the figure, the middle histogram is arguably
“visually closer” to the ORD histogram on the left, but is not con-
sidered so by ℓ2 due to the mismatch at about the 6th hour.

KL-divergence is another possibility as a distance metric, but it
has the drawback that it will be infinite for any candidate that places
0 mass in a place where the target places nonzero mass, making it
difficult to compare these (note that this follows directly from the
definition: KL(p∥q) = −

∑
i pi log

qi
pi

).

2.2 Guarantees and Problem Statement
Since FastMatch takes samples to estimate the candidate his-

togram visualizations, and therefore may return incorrect results,
we need to enforce probabilistic guarantees on the correctness of
the returned results.

First, we introduce some notation: we use ri to denote the es-
timate of the candidate visualization, while r∗i (with normalized
version r̄∗i ) is the true candidate visualization on the entire dataset.

Our formulation also relies on constants ε, δ, and σ, which we as-
sume either built into the system or provided by the analyst. We
further use N and Ni to denote the total number of datapoints and
number of datapoints corresponding to candidate i, respectively.

GUARANTEE 1. (SEPARATION) Any approximate histogram ri
with selectivity Ni

N
≥ σ that is in the true top-k closest (w.r.t. Defi-

nition 2) but not part of the output will be less than ε closer to the
target than the furthest histogram that is part of the output. That is,
if the algorithm outputs histograms rj1 , rj2 , . . . , rjk , then, for all
i, max1≤l≤k

{
d(r∗jl ,q)

}
− d(r∗i ,q) < ε, or Ni

N
< σ.

Note that we use “selectivity” as a number and not as a property,
matching typical usage in database systems literature [66, 45]. As
such, candidates with lower selectivity appear less frequently in the
data than candidates with higher selectivity.

GUARANTEE 2. (RECONSTRUCTION) Each approximate his-
togram ri output as one of the top-k satisfies d(ri, r∗i ) < ε.

The first guarantee says that any ordering mistakes are relatively
innocuous: for any two histograms ri and rj , if the algorithm out-
puts rj but not ri, when it should have been the other way around,
then either

∣∣d(r∗i ,q)− d(r∗j ,q)
∣∣ < ε, or Ni

N
< σ. The intuition

behind the minimum selectivity parameter, σ, is that certain can-
didates may not appear frequently enough within the data to get a
reliable reconstruction of the true underlying distribution responsi-
ble for generating the original data, and thus may not be suitable for
downstream decision-making. For example, in our income exam-
ple, a country with a population of 100 may have a histogram simi-
lar to the visual target but this would not be statistically significant.
Overall, our guarantee states that we still return a visualization that
is quite close to q, and we can be confident that anything dramati-
cally closer has relatively few total datapoints available within the
data (i.e., Ni is small).

The second guarantee says that the histograms output are not
too dissimilar from the corresponding true distributions that would
result from a complete scan of the data. As a result, they form
an adequate and accurate proxy from which insights may be de-
rived. With these definitions in place, we now formally state our
core problem:

PROBLEM 1. (TOP-K-SIMILAR). Given a visual target q, a
histogram-generating query template, k, ε, δ, and σ, display k
candidate attribute values {zi} ⊆ VZ (and accompanying visual-
izations {ri}) as quickly as possible, such that the output satisfies
Guarantees 1 and 2 with probability greater than 1− δ.

3. THE HISTSIM ALGORITHM
In this section, we discuss how to conceptually solve Problem 1.
We outline an algorithm, named HistSim, which allows us to de-
termine confidence levels for whether our separation and recon-
struction guarantees hold. We rigorously prove in this section that
when our algorithm terminates, it gives correct results with proba-
bility greater than 1−δ regardless of the data given as input. Many
systems-level details and other heuristics used to make HistSim
perform particularly well in practice will be presented in Section 4.
Table 1 provides a description of the notation used.

3.1 Algorithm Outline
HistSim operates by sampling tuples. Each of these tuples con-

tributes to one or more candidate histograms, using which HistSim
constructs histograms {r̄i}. After taking enough samples corre-
sponding to each candidate, it will eventually be likely that d(ri, r∗i )
is “small”, and that |d(ri,q) − d(r∗i ,q)| is likewise “small”, for
each i. More precisely, the set of candidates will likely be in a state
such that Guarantees 1 and 2 are both satisfied simultaneously.
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Figure 4: Illustration of HistSim.
Stages Overview. HistSim separates its sampling into three stages,
each with an error probability of at most δ

3
, giving an overall error

probability of at most δ:
• Stage 1 [Prune Rare Candidates]: Sample datapoints uniformly

at random without replacement, so that each candidate is sam-
pled a number of times roughly proportional to the number of
datapoints corresponding to that candidate. Identify rare candi-
dates that likely satisfy Ni

N
< σ, and prune these ones.

• Stage 2 [Identify Top-k]: Take samples from the remaining can-
didates until the top-k have been identified reliably.

• Stage 3 [Reconstruct Top-k]: Sample from the estimated top-k
until they have been reconstructed reliably.

This separation is important for performance: the pruning step (stage
1) often dramatically reduces the number of candidates that need
to be considered in stages 2 and 3.

The first two stages of HistSim factor into phases that are pure
I/O and phases that involve one or more statistical tests. The I/O
phases sample tuples (lines 6 and 19 in Algorithm 1)—we will de-
scribe how in Section 4; our algorithm’s correctness is independent
of how this happens, provided that the samples are uniform.

Stage 1: Pruning Rare Candidates (Section 3.3). During stage
1, the I/O phase (line 6) takes m samples, for some m fixed ahead
of time. This is followed by updating, for each candidate i, the
number of samples ni observed so far (line 7), and using the P-
values {δi} of a test for underrepresentation to determine whether
each candidate i is rare, i.e., has Ni

N
< σ (lines 7–9).

Stage 2: Identifying Top-k (Section 3.4). For stage 2, we focus
on a smaller set of candidates; namely, those that we did not find to
be rare (denoted by A). Stage 2 is divided into rounds. Each round

Algorithm 1: The HistSim algorithm
Input : Columns Z,X , visual target q, parameters k, ε, δ, σ
Output : Estimates M of the top-k closest candidates to q, histograms {ri}

1
2 Initialization.
3 ni, n

∂
i ← 0, ri, r∂i ← 0 for 1 ≤ i ≤ |VZ |;

4

5 stage 1: δupper ← δ
3 ;

6 Repeat m times: uniformly randomly sample some tuple without replacement;
7 Update {ni}, {ri}, {τi} based on the new samples;
8 ∆← {δi} where δi =

∑ni
j=0 f(j;N, ⌈σN⌉,m) for 1 ≤ i ≤ |VZ |;

9 Perform a Holm-Bonferroni statistical test with P-values in ∆; that is:

10 A←
{
i : δi ≤ δ

|VZ |−i+1
and for all j < i, δj ≤ δ

|VZ |−j+1

}
;

11

12 stage 2: δupper ← δ
3 ;

13 do
14 δupper ← 1

2 δ
upper ;

15 ni += n∂
i , ri += r∂i , τi ← d(ri,q) for i ∈ A;

16 n∂
i ← 0, r∂i ← 0 for i ∈ A;

17 M ← {i ∈ A : τi among k smallest};
18 s← 1

2 (maxi∈M τi + minj∈A\M τj);
19 Repeat: take uniform random samples from any i ∈ A;
20 Update {n∂

i }, {r
∂
i }, and {τ∂

i } based on the new samples;
21 εi ← s + ε

2 − τ∂
i for i ∈M ;

22 εj ← τ∂
j − (s− ε

2 ) if s− ε
2 ≥ 0 else∞ for j ∈ A \M ;

23 ∆← {δi} where δi ≥ P
(
d(r∂i , r

∗
i ) > εi

)
for i ∈ A;

24 while max(∆) > δupper ;
25

26 stage 3: Sample until ni ≥ 2
ε2

(
|VX | log 2 + log 3k

δ

)
, for all i ∈M ;

27 Update {ri} based on the new samples;
28 return M , and {ri : i ∈M};

attempts to use existing samples to estimate which candidates are
top-k and which are non top-k, and then draws new samples, testing
how unlikely it is to observe the new samples in the event that its
guess of the top-k is wrong. If this event is unlikely enough, then it
has recovered the correct top-k, with high probability.

At the start of each round, HistSim accumulates any samples
taken during the previous round (lines 15–16). It then determines
the current top-k candidates and a separation point s between top-k
and non top-k (lines 17–18), as this separation point determines a
set of hypotheses to test. Then, it begins an I/O phase and takes
samples (line 19). The samples taken each round are used to gener-
ate the number of samples taken per candidate, {n∂

i }, the estimates
{r∂i }, and the distance estimates {τ∂

i } (line 20). These statistics are
computed from fresh samples each round (i.e., they do not reuse
samples across rounds) so that they may be used in a statistical
test (lines 20–23), discussed in Section 3.4. After computing the
P-values for each null hypothesis to test (line 23), HistSim deter-
mines whether it can reject all the hypotheses with type 1 error (i.e.,
probability of mistakenly rejecting a true null hypothesis) bounded
by δupper and break from the loop (line 24). If not, it repeats with
new samples and a smaller δupper (where the {δupper} are chosen
so that the probability of error across all rounds is at most δ

3
).

Stage 3: Reconstructing Top-k (Section 3.5). Finally, stage 3
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ensures that the identified top-k, M , all satisfy d(ri, r
∗
i ) ≤ ε for

i ∈M (so that Guarantee 2 holds), with high probability.
Figure 4 illustrates HistSim stage 2 running on a toy example in
which we compute the top-2 closest histograms to a target. At
round n, it estimates r1 and r2 as the top-2 closest, which it re-
fines by the time it reaches round n + m. As the rounds increase,
HistSim takes more samples to get better estimates of the distances
{τi} and thereby improve the chances of termination when it per-
forms its multiple hypothesis test in stage 2.
Choosing where to sample and how many samples to take. The
estimates M and {τi} allow us to determine which candidates are
“important” to sample from in order to allow termination with fewer
samples; we return to this in Section 4. Our HistSim algorithm is
agnostic to the sampling approach.
Outline. We first discuss the Holm-Bonferroni method for testing
multiple statistical hypotheses simultaneously in Section 3.2, since
stage 1 of HistSim uses it as a subroutine, and since the simulta-
neous test in stage 2 is based on similar ideas. In Section 3.3, we
discuss stage 1 of HistSim, and prove that upon termination, all
candidates i flagged for pruning satisfy Ni

N
< σ with probability

greater than δ
3

. Next, in Section 3.4, we discuss stage 2 of Hist-
Sim, and prove that upon termination, we have the guarantee that
any non-pruned candidate mistakenly classified as top-k is no more
than ε further from the target than the furthest true non-pruned top-
k candidate (with high probability). The proof of correctness for
stage 2 is the most involved and is divided as follows:
• In Section 3.4.1, we give lemmas that allow us to relate the

reconstruction of the candidate histograms from estimates {r∂i }
to the separation guarantee via multiple hypothesis testing;

• In Section 3.4.2, we describe a method to select appropriate
hypotheses to use for testing in the lemmas of Section 3.4.1;

• In Section 3.4.3, we prove a theorem that enables us to use the
samples per candidate histogram to determine the P-values as-
sociated with the hypotheses.

In Section 3.5, we discuss stage 3 and conclude with an overall
proof of correctness.

3.2 Controlling Family­wise Error
In the first two stages of HistSim, the algorithm needs to perform

multiple statistical tests simultaneously [17]. In stage 1, HistSim
tests null hypotheses of the form “candidate i is high-selectivity”
versus alternatives like “candidate i is not high-selectivity”. In this
case, “rejecting the null hypothesis at level δupper” roughly means
that the probability that candidate i is high-selectivity is at most
δupper . Likewise, during stage 2, HistSim tests null hypotheses
of the form “candidate i’s true distance from q, τ∗

i , lies above (or
below) some fixed value s.” If the algorithm correctly rejects every
null hypothesis while controlling the family-wise error [50] at level
δupper , then it has correctly determined which side of s every τ∗

i

lies, a fact that we use to get the separation guarantee.
Since stages 1 and 2 test multiple hypotheses at the same time,

HistSim needs to control the family-wise type 1 error (false posi-
tive) rate of these tests simultaneously. That is, if the family-wise
type 1 error is controlled at level δupper , then the probability that
one or more rejecting tests in the family should not have rejected
is less than δupper — during stage 1, this intuitively means that the
probability one or more high-selectivity candidates were deemed
to be low-selectivity is at most δupper , and during stage 2, this
roughly means that the probability of selecting some candidate as
top-k when it is non top-k (or vice-versa) is at most δupper .

The reader may be familiar with the Bonferroni correction, which
enforces a family-wise error rate of δupper by requiring a signifi-
cance level δupper

|VZ | for each test in a family with |VZ | tests in to-
tal. We instead use the Holm-Bonferroni method [36], which is

uniformly more powerful than the Bonferroni correction, meaning
that it needs fewer samples to make the same guarantee. Like its
simpler counterpart, it is correct regardless of whether the family
of tests has any underlying dependency structure. In brief, a level
δupper test over a family of size |VZ | works by first sorting the
P-values {δi} of the individual tests in increasing order, and then
finding the minimal index j (starting from 1) where δj > δupper

|VZ |−j+1

(if this does not exist, then set j = |VZ |). The tests with smaller
indices reject their respective null hypotheses at level δupper , and
the remaining ones do not reject.

3.3 Stage 1: Pruning Rare Candidates
One way to remove rare (i.e. low-selectivity) candidates from

processing is to use an index to look up how many tuples cor-
respond to each candidate. While this will work well for some
queries, it unfortunately does not work in general, as candidates
generated from queries of the form in Definition 1 could have ar-
bitrary predicates attached, which cannot all be indexed ahead-of-
time. Thus, we turn to sampling.

To prune rare candidates, we need some way to determine whether
each candidate i satisfies Ni

N
< σ with high probability. To do so,

we make the simple observation that, after drawing m tuples with-
out replacement uniformly at random, the number of tuples corre-
sponding to candidate i follows a hypergeometric distribution [42].
The number of samples to take, m, is a parameter; we observe
in our experiments that m = 5 · 105 is an appropriate choice.1

That is, if candidate i has Ni total corresponding tuples in a dataset
of size N , then the number of tuples ni for candidate i in a uni-
form sample without replacement of size m is distributed accord-
ing to ni ∼ HypGeo(N,Ni,m). As such, we can make use of
a well-known test for underrepresentation [50] to accurately detect
when candidate i has Ni

N
< σ. The null hypothesis is that can-

didate i is not underrepresented (i.e., has Ni ≥ σN ), and letting
f( · ;N, ⌈σN⌉,m) denote the hypergeometric pdf in this case, the
P-value for the test is given by

ni∑
j=0

f(j;N, ⌈σN⌉,m)

where ni is the number of observed tuples for candidate i in the
sample of size m. Roughly speaking, the P-value measures how
surprised we are to observe ni or fewer tuples for candidate i when
Ni
N
≥ σ — the lower the P-value, the more surprised we are.

If we reject the null hypothesis for some candidate i when the
P-value is at most δi, we are claiming that candidate i satisfies
Ni
N

< σ, and the probability that we are wrong is then at most
δi. Of course, we need to test every candidate for rareness, not
just a given candidate, which is why HistSim stage 1 uses a Holm-
Bonferroni procedure to control the family-wise error at any given
threshold. We note in passing that the joint probability of observ-
ing ni samples for candidate i across all candidates is a multivariate
hypergeometric distribution for which we could perform a similar
test without a Holm-Bonferroni procedure, but the CDF of a multi-
variate hypergeometric is extremely expensive to compute, and we
can afford to sacrifice some statistical power for the sake of compu-
tational efficiency since we only need to ensure that the candidates
pruned are actually rare, without necessarily finding all the rare
candidates — that is, we need high precision, not high recall.

We now prove a lemma regarding correctness of stage 1.

LEMMA 1 (STAGE 1 CORRECTNESS). After HistSim stage 1
completes, every candidate i removed from A satisfies Ni

N
< σ,

with probability greater than 1− δ
3

1Our results are not sensitive to the choice of m, provided m is not too small (so that
the algorithm fails to prune anything) or too big (i.e., a nontrivial fraction of the data).
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PROOF. This follows immediately from the above discussion, in
conjunction with the fact that the P-values generated from each test
for underrepresentation are fed into a Holm-Bonferroni procedure
that operates at level δ

3
, so that the probability of pruning one or

more non-rare candidates is bounded above by δ
3

.

3.4 Stage 2: Identifying Top­K Candidates
HistSim stage 2 attempts to find the top-k closest to the target

out of those remaining after stage 1. To facilitate discussion, we
first introduce some definitions.

DEFINITION 3. (MATCHING CANDIDATES) A candidate is called
matching if its distance estimate τi = d(ri,q) is among the k
smallest out of all candidates remaining after stage 1.

We denote the (dynamically changing) set of candidates that are
matching during a run of HistSim as M ; we likewise denote the
true set of matching candidates out of the remaining, non-pruned
candidates in A as M∗. Next, we introduce the notion of εi-deviation.

DEFINITION 4. (εi-DEVIATION) The empirical vector of counts
ri for some candidate i has εi-deviation if the corresponding nor-
malized vector r̄i is within εi of the exact distribution r̄∗i . That is,
d(ri, r

∗
i ) = ||̄ri − r̄∗i ||1 < εi

Note that Definition 4 overloads the symbol ε to be candidate-
specific by appending a subscript. In Section 3.4.3, we provide
a way to quantify εi given samples.

If HistSim reaches a state where, for each matching candidate
i ∈M , candidate i has εi-deviation, and εi < ε for all i ∈M , then
it is easy to see that the Guarantee 2 holds for the matching candi-
dates. That is, in such a state, if HistSim output the histograms
corresponding to the matching candidates, they would look simi-
lar to the true histograms. In the following sections, we show that
εi-deviation can also be used to achieve Guarantee 1.
Notation for Round-Specific Quantities. In the following sub-
sections, we use the superscript “∆” to indicate quantities corre-
sponding to samples taken during a particular round of HistSim
stage 2, such as {r∂i } and {τ∂

i }. In particular, these quantities are
completely independent of samples taken during previous rounds.

3.4.1 Deviation­Bounds Imply Separation
In order to reason about the separation guarantee, we prove a series
of lemmas following the structure of reasoning given below:
• We show that when a carefully chosen set of null hypotheses

are all false, M contains valid top-k closest candidates.
• Next, we show how to use εi-deviation to upper bound the prob-

ability of rejecting a single true null hypothesis.
• Finally, we show how to reject all null hypotheses while con-

trolling the probability of rejecting any true ones.

LEMMA 2 (FALSE NULLS IMPLY SEPARATION). Consider the
set of null hypotheses {H(i)

0 } defined as follows, where s ∈ R+:

H
(i)
0 =

{
τ∗
i ≥ s+ ε

2
, for i ∈M

τ∗
i ≤ s− ε

2
, for i ∈ A \M

When H
(i)
0 is false for every i ∈ A, then M is a set of top-k candi-

dates that is correct with respect to Guarantee 1.

PROOF. When all the null hypotheses are false, then τ∗
i < s+ ε

2
for all i ∈M , and τ∗

j > s− ε
2

for all j ∈ A \M . This means that

max
i∈M

τ∗
i − min

j∈A\M
τ∗
j < ε

and thus M is correct with respect to the separation guarantee.

Intuitively, Lemma 2 states that when there is some reference point
s such that all of the candidates in M have their τ∗

i smaller than
s − ε

2
, and the rest have their τ∗

i greater than s + ε
2

, then we have
our separation guarantee.

Next, we show how to compute P-values for a single null hypoth-
esis of the type given in Lemma 2. Below, we use “PH” to denote
the probability of some event when hypothesis H is true.

LEMMA 3 (DISTANCE DEVIATION TESTING). Let x ∈ R+.
To test the null hypothesis H

(i)
0 : τ∗

i ≥ x versus the alternative
H

(i)
A : τ∗

i < x, we have that, for any εi > 0,

P
H

(i)
0

[
x− τ∂

i > εi
]
≤ P

(
d(r∂i , r

∗
i ) > εi

)
Likewise, for testing H

(i)
0 : τ∗

i ≤ x versus the alternative H
(i)
A :

τ∗
i > x, we have

P
H

(i)
0

[
τ∂
i − x > εi

]
≤ P

(
d(r∂i , r

∗
i ) > εi

)
PROOF. We prove the first case; the second is symmetric. Sup-

pose candidate i satisfies τ∗
i ≥ x for some x ∈ R+. Then, if we

take n∂
i samples from which we construct the random quantities r∂i

and τ∂
i , we have that

P
H

(i)
0

[
x− τ∂

i > εi
]
≤ P

(
τ∗
i − τ∂

i > εi
)

= P
(
||̄r∗i − q̄|| − ||q̄− r̄∂i || > εi

)
≤ P

(
||̄r∗i − r̄∂i || > εi

)
= P

(
d(r∗i , r

∂
i ) > εi

)
Each step follows from the fact that increasing the quantity to the
left of the “>” sign within the probability expression can only in-
crease the probability of the event inside. The first step follows
from the assumption that τ∗

i ≥ x, and the third step follows from
the triangle inequality.

We use Lemma 3 in conjunction with Lemma 2 by using s± ε
2

for
the reference x of Lemma 3, for a particular choice of s (discussed
in Section 3.4.2). For example, Lemma 3 shows that when we are
testing the null hypothesis for i ∈ M that τ∗

i ≥ s + ε
2

and we
observe τ∂

i such that 0 < εi = s+ ε
2
− τ∂

i , we can use (any upper
bound of) P

(
d(r∗i , r

∂
i ) > εi

)
as a P-value for this test. That is,

consider a tester with the following behavior, illustrated pictorially:

x τ∂
i

H
(i)
0 : τ∗

i ≤ x

εi

If P
(
d(r∗i , r

∂
i ) > εi

)
≤ δupper , then reject H(i)

0

In the above picture, the tester assumes that τ∗
i is smaller than x,

but it observes a value τ∂
i that exceeds x by εi. When the true value

τ∗
i ≤ x for any reference x, then the observed statistic τ∂

i will only
be εi or larger than x (and vice-versa) when the reconstruction r∂i
is also bad, in the sense that P

(
d(r∗i , r

∂
i ) > εi

)
is very small. If the

above tester rejects H(i)
0 when P

(
d(r∗i , r

∂
i ) > εi

)
≤ δupper , then

Lemma 3 says that it is guaranteed to reject a true null hypothesis
with probability at most δupper . We discuss how to compute an
upper bound on P

(
d(r∗i , r

∂
i ) > εi

)
in Section 3.4.3.

Finally, notice that Lemma 3 provides a test which controls the
type 1 error of an individual H(i)

0 , but we only know that the sepa-
ration guarantee holds for i ∈ M when all the hypotheses {H(i)

0 }
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Figure 5: Illustration of HistSim choosing the split point s when
testing whether the separation and reconstruction guarantees hold.
are false. Thus, the algorithm requires a way to control the type
1 error of a procedure that decides whether to reject every H

(i)
0

simultaneously. In the next lemma, we give such a tester which
controls the error for any upper bound δupper .

LEMMA 4 (SIMULTANEOUS REJECTION). Consider any set
of null hypotheses {H(i)

0 }, and consider a set of P-values {δi} as-
sociated with these hypotheses. The tester given by

Decision =

{
reject every H

(i)
0 , when max

i
δi ≤ δupper

reject no H
(i)
0 , otherwise

rejects ≥ 1 true null hypotheses with probability ≤ δupper .

PROOF. Consider the set of true null hypotheses and call it {H(t)
0 }

— suppose there are T ≥ 1 in total (if T = 0, we have nothing to
prove), and index them using t from 1 to T . Then

P
(
∃t : reject H(t)

0

)
= P

(
∀t : reject H(t)

0

)
=

T∏
t=1

P
(

reject H(t)
0

∣∣ reject H(1,...,t−1)
0

)
= δ1

T∏
t=2

P
(

reject H(t)
0

∣∣ reject H(1,...,t−1)
0

)
≤ δ1 · 1
≤ δupper

The first step follows since null hypotheses are only rejected when
they are all rejected. The second to last step follows since proba-
bilities are at most 1, and the last step follows since the tester only
rejects when all the P-values are at most δupper , including δ1.

Discussion of Lemma 4. At first glance, the multiple hypothesis
tester given in Lemma 4, which compares all P-values to the same
δupper , seems to be even more powerful than a Holm-Bonferroni
tester, which compares P-values to various fractions of δupper . In
fact, although based on similar ideas, they are not comparable: a
Holm-Bonferroni tester may allow for rejection of a subset of the
null hypotheses, wheres the tester of Lemma 4 is “all or nothing”.
In fact, the tester of Lemma 4 is essentially the union-intersection
method formulated in terms of P-values; see [17] for details.

3.4.2 Selecting Each Round’s Tests
Each round of HistSim stage 2 constructs a family of tests to

perform whose family-wise error probability is at most δupper . At
round t (starting from t = 1), δupper is chosen to be δ/3

2t
, so that

the error probability across all rounds is at most
∑

t≥1
δ/3
2t

= δ
3

via a union bound (see Lemma 5 for details).
There is still one degree of freedom: namely, how to choose the

split point s used for the null hypotheses in Lemma 2. In line 18,

it is chosen to be s ← 1
2
(max
i∈M

τi + min
j∈A\M

τj). The intuition for

this choice is as follows. Although the quantities r∂i and τ∂
i are

generated from fresh samples in each round of HistSim stage 2,
the quantities ri and τi are generated from samples taken across all
rounds of HistSim stage 2. As such, as rounds progress (i.e., if the
testing procedure fails to simultaneously reject multiple times), the
estimates ri and τi become closer to r∗i and τ∗

i , the set M becomes
more likely to coincide with M∗, and the null hypotheses {H(i)

0 }
chosen become less likely to be true provided an s chosen some-
where in [maxi∈M τi,minj∈A\M τj ], since values in this interval
are likely to correctly separate M∗ and A \M∗ as more and more
samples are taken. In the interest of simplicity, we simply choose
the midpoint halfway between the furthest candidate in M and the
closest candidate in A\M . For example, at iteration n in Figure 5,
s lies halfway between candidates r2 and r4. In practice, we ob-
serve that maxi∈M τi and minj∈A\M τj are typically very close to
each other, so that the algorithm is not very sensitive to the choice
of s, so long as it falls between M and A \M .

Figure 5 illustrates this choice of s and the {H(i)
0 } on our toy

example. As in Figure 4, the boundary of M is represented by the
dashed box. The split point s is located at the rightmost boundary
of the dashed box.The {εj} (i.e., the amounts by which the {τ∂

j }
deviate from s ± ε

2
) determine the P-values associated with the

{H(i)
0 } which ultimately determine whether HistSim stage 2 can

terminate, as we discuss more in the next section.

3.4.3 Deviation­Bounds Given Samples
The previous section provides us a way to check whether the

rankings induced by the empirical distances {τi} are correct with
high probability. This was facilitated via a test which measures our
“surprise” for measuring {τ∂

i } if the current estimate M is not cor-
rect with respect to Guarantee 1, which in turn used a test for how
likely some candidate’s d(r∗i , r

∂
i ) is greater than some threshold εi

after taking ni samples. We now provide a theorem that allows us
to infer, given the samples taken for a given candidate, how to re-
late εi with the probability δi with which the candidate can fail to
respect its deviation-bound εi. The bound seems to be known to the
theoretical computer science community as a “folklore fact” [27];
we give a prooffor the sake of completeness. Our proof relies on
repeated application of the method of bounded differences [56] in
order to exploit some special structure in the ℓ1 distance metric.
The bound developed is information-theoretically optimal; that is,
it takes asymptotically the fewest samples required to guarantee
that an empirical distribution estimated from the samples will be
no further than εi from the true distribution.

THEOREM 1. Suppose we have taken ni samples with replace-
ment for some candidate i’s histogram, resulting in the empirical
estimate ri. Then ri has εi-deviation with probability greater than

1 − δi for εi =
√

2
ni

(
|VX | log 2 + log 1

δi

)
. That is, with proba-

bility > 1− δi, we have: ||̄ri − r̄∗i ||1 < εi.

In fact, this theorem also holds if we sample without replace-
ment; we return to this point in Section 4.

PROOF. For j ∈ [|VX |], we use rj to denote the number of
occurrences of attribute value j among the ni samples, and the nor-
malized count r̄j is our estimate of r̄∗j , the true proportion of tuples
having value j for attribute X . Note that we have omitted the can-
didate subscript i for clarity.

We need to introduce some machinery. Consider functions of
the form f : [|VX |] → {+1,−1} . Let {fm} be the set of all such
functions, where m ∈ [2|VX |], since there are 2|VX | such functions.

8



For any m ∈ [2|VX |], consider the random variable

Ym =

|VX |∑
j=1

fm(j)(r̄j − r̄∗j )

By linearity of expectation, it’s clear that E [Ym] = 0, since fm(j)
is constant and E [r̄j ] = r̄∗j for each j. Since each r̄j is a func-
tion of the samples taken {sk : 1 ≤ k ≤ ni}, each Ym is like-
wise uniquely determined from samples, so we can write Ym =
gm(s1, . . . , sni), where each sample sk is a random variable dis-
tributed according to sk ∼ r̄∗. Note that the function gm satisfies
the Lipschitz property

|gm(s1, . . . , sk, . . . , sni)− gm(s1, . . . , s
′
k, . . . , sni)| ≤

2

ni

for any j ∈ ||VX || and s1, . . . , sni . For example, this will occur
with equality if fm(sk) = −fm(s′k); that is, if fm assigns opposite
signs to sk and s′k, then changing this single sample moves 1/ni of
the empirical mass in such a way that it does not get canceled out.
We may therefore apply the method of bounded differences [56] to
yield the following McDiarmid inequality—a generalization of the
standard Hoeffding’s inequality:

P (Ym ≥ E [Ym] + εi) ≤ exp
(
−ε2ini/2

)
Recalling that E [Ym] = 0, this actually says that

P (Ym ≥ εi) ≤ exp
(
−ε2ini/2

)
This holds for any m ∈ [2|VX |]. Union bounding over all such m,
we have that

P (∃m : Ym ≥ εi) ≤ 2|VX | exp
(
−ε2ini/2

)
If this does not happen (i.e., for every Ym, we have Ym < εi),
then we have that ||̄ri − r̄∗i ||1 < εi, since for any attribute value j,
|r̄j − r̄∗j | = maxtj∈{+1,−1} tj(r̄j − r̄∗j ). But if Ym < εi for all
m, this means that we must have some m such that

εi >
∑
j

fm(j)(r̄j − r̄∗j ) =
∑
j

|r̄j − r̄∗j | = ||̄ri − r̄∗i ||1

As such P (∃m : Ym ≥ εi) is an upper bound on P (||̄ri − r̄∗i ||1 ≥ εi).
The desired result follows from noting that

δi ≤ 2|VX | exp
(
−ε2ini/2

)
⇐⇒ εi ≤

√
2

ni

(
|VX | log 2 + log

1

δi

)

Optimality of the bound in Theorem 1. If we solve for ni in The-
orem 1, we see that we must have ni =

|VX | log 4+2 log(1/δi)

ε2i
. That

is, Ω
(

|VX |
ε2i

)
samples are necessary guarantee that the empirical

discrete distribution r̄i is no further than εi from the true discrete
distribution r̄∗i , with high probability. This matches the informa-
tion theoretical lower bound noted in prior work [12, 20, 26, 72].
Generating P-values from Theorem 1. We use the above bound

to generate P-values for testing the null hypotheses in Lemma 2.
From the discussion in that lemma, a tester which rejects H(i)

0 for
i ∈ M when it observes s + ε

2
− τ∂

i > εi, for fixed εi, has a
type 1 error bounded above by δi = 2|VX | exp

(
−ε2ini/2

)
. Since

we want to bound the type 1 error rate by an amount δupper , this

induces a particular εi against which we can compare s+ ε
2
− τ∂

i ,
but because δi and εi are monotonically related, we can take

δi = 2|VX | exp
(
−(s+ ε

2
− τ∂

i )
2/2

)
and compare with δupper directly, allowing us to use this δi as a
P-value for use with the tester in Lemma 4.

3.4.4 Stage 2 Correctness
We can now show correctness of HistSim stage 2.

LEMMA 5 (STAGE 2 CORRECTNESS). After HistSim stage 2
completes, each candidate i ∈ M , satisfies τ∗

i − τ∗
j ≤ ε for every

j ∈ A \M with probability greater than 1− δ
3

.

PROOF. First, show that if HistSim stage 2 terminates after iter-
ation t, then the probability of an error is at most δ/3

2t
. Next, show

that the probability of an error after terminating at any iteration is
at most δ

3
by union bounding over iterations.

If stage 2 terminates at iteration t, then the probability of reject-
ing one or more null hypotheses is at most δ/3

2t
by Lemma 4 and by

Theorem 1. Each H
(i)
0 for i ∈ M says that τ∗

i > s + ε
2

, and each
H

(j)
0 for j ∈ A \M says that τ∗

i < s− ε
2

– if all of these are false,
then by Lemma 2 we have that M and A \M induce a separation
of the candidates that is correct with respect to Guarantee 1, so the
only way an error could occur is if one or more nulls are true. We
just established that the probability of rejecting one or more true
nulls at iteration t is at most δ/3

2t
, which means that the probability

of an incorrect separation between M and A \M is also at most
δ/3
2t

.
Finally, by union bounding over iterations, we have that

P (∪t≥1mistake at iteration t) ≤
∑
t≥1

P (mistake at iteration t)

<
∑
t≥1

δ/3

2t
= δ/3

Thus, when stage 2 terminates, M is correct (with respect to Guar-
antee 1) with probability greater than 1− δ

3

3.5 Stage 3 and Overall Proof of Correctness
Stage 3 of HistSim, discussed in our overall proof of correctness,

consists of taking samples from each candidate in M to ensure they
all have ε-deviation with high probability (using Theorem 1). This
proof is given next, and proceeds in four steps:
• Step 1: HistSim stage 1 incorrectly prunes one or more can-

didates meeting the selectivity threshold σ with probability at
most δ

3
(Lemma 1).

• Step 2: The probability that stage 2 incorrectly (with respect to
Guarantee 1) separates M and A \M is at most δ

3
.

• Step 3: The probability that the set of candidates M violates
Guarantee 2 after stage 3 runs is at most δ

3
.

• Step 4: The union bound over any of these bad events occurring
gives an overall error probability of at most δ.

THEOREM 2. The k histograms returned by Algorithm 1 satisfy
Guarantees 1 and 2 with probability greater than 1− δ.

PROOF. From Lemma 1, the probability that high-selectivity
candidates were pruned during stage 1 is upper bounded by δ

3
.

From Lemma 5, the probability that the algorithm chooses M such
that there exists some i ∈M and j ∈M∗ \M with τ∗

i −τ∗
j > ε is

at most δ
3

. Union bounding over these events, the probability of ei-
ther occurring is at most 2δ

3
. Since Guarantee 1 cannot be violated
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when neither of these events occur, the algorithm violates this guar-
antee also with probability at most 2δ

3
. Finally, using Theorem 1,

HistSim stage 3 line 26 takes a number of samples for each can-
didate i ∈ M such that the probability that a given candidate fails
to be reconstructed with error ε or less (that is, d(ri, r∗i ) > ε) is at
most δ

3k
. Union bounding over all candidates in M , and noting that

|M | = k, the probability that one or more candidates does not have
εi-deviation is at most δ

3
. Union bounding with the upper bound on

the probability that Guarantee 1 is violated, the probability that ei-
ther Guarantee 1 or Guarantee 2 is violated is at most 2δ

3
+ δ

3
= δ,

and we are done.

Computational Complexity. Stage 1 of Algorithm 1 shares com-
putation between candidates when computing P-values induced by
the hypergeometric distribution, and thus makes at most maxi∈VZ ni

calls to evaluate a hypergeometric pdf (we use Boost’s implemen-
tation [1]); this can be done in O (maxi∈VZ ni). To facilitate the
sharing, stage 1 requires sorting the candidates in increasing order
of ni, which is O (|VZ | · log |VZ |). Next, each iteration of Hist-
Sim stage 2 requires computing distance estimates τi and τ∂

i for
every i ∈ A, which runs in time O (|A| · |VX |). Each iteration of
stage 2 further uses a sort of candidates in A by τi to determine M
and s, which is O (|A| · log |A|). HistSim stage 2 almost always
terminates within 4 or 5 iterations in practice. Overall, we observe
that the computation required is inexpensive compared to the cost
of I/O, even for data stored in-memory.

4. THE FASTMATCH SYSTEM
This section describes FastMatch, which implements the Hist-

Sim algorithm. We start by presenting the high-level components
of FastMatch. We then describe the challenges we faced while
implementing FastMatch and describe how the components in-
teract to alleviate those challenges, while still satisfying Guaran-
tees Guarantee 1 and Guarantee 2. While design choices presented
in this section are heuristics with practicality in mind, the algo-
rithm implemented is still theoretically rigorous, with results satis-
fying our probabilistic guarantees. In the following, each time we
describe a heuristic, we will clearly point it out as such.

4.1 FastMatch Components
FastMatch has three key components: the I/O Manager, the

Sampling Engine, and the Statistics engine. We describe each of
them in turn; Figure 6 provides an architecture diagram—we will
revisit the interactions within the diagram at the end of the section.
I/O Manager. In FastMatch, requests for I/O are serviced at the
granularity of blocks. The I/O manager simply services requests for
blocks in a synchronous fashion. Given the location of some block,
it synchronously processes the block at that location.
Sampling Engine. The sampling engine is responsible for deciding
which blocks to sample. It uses bitmap index structures (described
below) in order to determine the types of samples located at a given
block. Given the current state of the system, it prioritizes certain
candidates over others for sampling.
Statistics Engine. The statistics engine implements most of the
logic in the HistSim algorithm. The only substantial difference be-
tween the actual code and the pseudocode presented in Algorithm 1

is that the statistics engine does not actually perform any sampling,
instead leaving this responsibility to the sampling engine. The rea-
son for separating these components will be made clear later on.

Bitmap Index Structures. FastMatch runs on top of a bitmap-
based sampling system used for sampling on-demand, as in prior
work [8, 47, 46, 64]. These papers have demonstrated that bitmap
indexes [19] are effective in supporting sampling for incremental or
early termination of visualization generation. Within FastMatch,
bitmap indexes help the sampling engine determine whether a given
block contains samples for a given candidate. For each attribute
A, and each attribute value Av , we store a bitmap, where a ‘0’
at position p indicates that the corresponding block at position p
contains no tuples with attribute value Av , and a ‘1’ indicates that
block p contains one or more tuples with attribute value Av . Can-
didate visualizations are generated by attribute values(or a predi-
cate of ANDs and ORs over attribute values; see Appendix A), so
these bitmaps allow the sampling engine to rapidly test whether a
block contains tuples for a given candidate histogram. Bitmaps
are amenable to significant compression [74, 75], and since we
are further only requiring a single bit per block per attribute value,
our storage requirements are orders-of-magnitude cheaper than past
work that requires a bit per tuple [8, 46, 64]. Notice also that our
techniques also apply for continuous candidate attributes; please
see Appendix A for details.

4.2 Implementation Challenges
So far, we have designed HistSim without worrying about how

sampling actually takes place, with an implicit assumption that
there is no overhead to taking samples randomly across various
candidates. While implementing HistSim within FastMatch, we
faced several non-trivial challenges, outlined below:
• Challenge 1: Random sampling at odds with performance

characteristics of storage media. The cost to fetch data is
locality-dependent when dealing with real storage devices. Even
if the data is stored in-memory, tuples (i.e., samples) that are
spatially closer to a given tuple may be cheaper to fetch, since
they may already be present in CPU cache.

• Challenge 2: Deciding how many samples to take between
rounds of HistSim. The HistSim algorithm does not specify
how many samples to taken in between rounds of stage 2; it
is agnostic to this choice, with correctness unaffected. If the
algorithm takes many samples, it may spend more time on I/O
than is necessary to terminate with a guarantee. If the algorithm
does not take enough samples, the statistical test on line 24 will
probably not reject across many rounds, decaying δupper and
making it progressively more difficult to get enough samples to
meet stage 2’s termination criterion.

• Challenge 3: Non-uniform cost/benefit of different candi-
dates. Tuples for some candidates can be over-represented in
the data and therefore take less time to sample compared to
underrepresented candidates. At the same time, the benefit
of sampling tuples corresponding to different candidate his-
tograms is non-uniform: for example, those histograms which
are “far” from the target distribution are less useful (in terms
of getting HistSim to terminate quickly) than those for which
HistSim chooses small values for εi.

• Challenge 4: Assessing benefit to candidates depends on
data seen so far. The “best” choice of which tuples to sample
for getting HistSim to terminate quickly can be most accurately
estimated from all the data seen so far, including the most re-
cent data. However, computing this estimate after processing
every tuple and blocking I/O until the “best” decision can be
made is prohibitively expensive.

We now describe our approaches to tackling these three challenges.
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Challenge 1: Randomness via Data Layout
To maximize performance benefits from locality, we randomly per-
mute the tuples of our dataset as a preprocessing step, and to “sam-
ple” we may then simply perform a linear scan of the shuffled data
starting from any point. This matches the assumptions of stage 1 of
HistSim, which requires samples to be taken without replacement.
Although the theory we developed in Section 3 for HistSim stage
2 was for sampling with-replacement, as noted in [35, 11], it still
holds now that we are sampling without replacement, as concen-
tration results developed for the with-replacement regime may be
transferred automatically to the without-replacement regime. This
approach of randomly permuting upfront is not new, and is adopted
by other approximate query processing systems [76, 63, 78].

Challenge 2: Deciding Samples to Take Between Rounds
The HistSim algorithm leaves the number of samples to take dur-
ing a given round of stage 2 lines 19 unspecified; its correctness
is guaranteed regardless of how this choice is made. This choice
offers a tradeoff: take too many samples, and the system will spend
a lot of time unnecessarily on I/O; take too few, and the algorithm
will never terminate, since the “difficulty” of the test increases with
each round, as we set δupper ← δupper/2.

To combat this challenge, we employ a simple heuristic. To es-
timate the number of samples we need to take for candidate i, we
assume that τi = τ∗

i , so that we need to learn r∂i to within ε′i of
r∗i for a given round’s statistical test to successfully reject, where
ε′i = s+ ε

2
−τi for i ∈M and ε′i = τi−(s− ε

2
) for i ∈ A\M . (Re-

call that we use εi-deviation to upper bound the P-values.) For this
setting of {ε′i}, we thus choose to take samples for each candidate
by solving for ni in the bound of Theorem 1. This yields

n′
i = 2 (|VX | log 2− log δupper) /

(
ε′i
)2 (1)

Each round of stage 2 of our FastMatch implementation of Hist-
Sim thus continues to take samples until n∂

i ≥ n′
i for every candi-

date i. It then performs the multiple hypothesis test on lines 20–23.
If it rejects, the algorithm terminates and the system gives the out-
put to the user; otherwise, it once again estimates each n′

i using
Equation (1) (plugging in {ε′i} from updated {τi}) and repeats.

Challenge 3: Block Choice Policies
Deciding which blocks to read during stage 1 of HistSim is sim-
ple since we are only trying to detect low-selectivity candidates —
in this case we just scan each block sequentially. Deciding which
blocks to read during stage 2 of HistSim is more difficult due to
the non-uniform cost (i.e., time) and benefit of samples for each
candidate histogram. If either cost or benefit were uniform across
candidates, matters would be simplified significantly: if cost were
uniform, we could simply read in the blocks with the most bene-
ficial candidates; if benefit were uniform, we could simply read in
the lowest cost blocks (for example, those closest spatially to the
current read position). To address these concerns, we developed a
simple policy which we found worked well in practice for getting
HistSim to terminate quickly.

AnyActive block selection policy. Recall that the end of each iter-
ation of stage 2 of HistSim estimates the number of samples {n′

i}
necessary from each candidate so that the next iteration is more
likely to terminate. Note that if each candidate satisfied ni = n′

i

at the time HistSim performed the test for termination and before
it computed the {n′

i}, then HistSim would be in a state where it
can safely terminate. Those candidates for whom ni < n′

i we dub
active candidates, and we employ a very simple block selection
policy, dubbed the AnyActive block selection policy, which is to
only read blocks which contain at least one tuple corresponding
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Figure 7: While the I/O manager processes magenta blocks, the
sampling engine selects blue blocks ahead of time, using looka-
head. Blocks with solid color = read, blocks with squiggles = skip.
to some active candidate. The bitmap indexes employed by Fast-
Match allow it to rapidly test whether a block contains tuples for a
given candidate visualization, and thus to rapidly apply the AnyAc-
tive block selection policy. Overall, our approach is as follows: we
read blocks in sequence, and if blocks satisfy our AnyActive crite-
rion, then we read all of the tuples in that block, else, we skip that
block. We discuss how to make this approach performant below.

A naive variant of this policy is presented in Algorithm 2, for
which we describe improvements below.

Challenge 4: Asynchronous Block Selection
From the previous discussion, the sampling engine employs an Any-
Active block selection policy when deciding which blocks to pro-
cess. Ideally, the {ni} and {n′

i} (number of samples taken for
candidate i and estimated number of samples needed for candidate
i, respectively) used to assign active status to candidates should be
computed from the freshest possible counts available to the sam-
pling engine. That is, in an ideal setting, each candidate’s active
status would be updated immediately after each block is read, and
the potentially new active status should be used for making deci-
sions about immediately subsequent blocks. Unfortunately, this re-
quirement is at odds with real system characteristics. Employing
it exactly implies leaving the I/O manager idle while the sampling
engine determines whether each block should be read or skipped.
To prevent this issue, we relax the requirement that the sampling
thread employ AnyActive with the freshest {ni} available to it. In-
stead, given the current {ni} and fresh set of {n′

i}, it precomputes
the active status for each candidate and “looks ahead”, marking an
entire batch of blocks for either reading or skipping, and communi-
cates this with the I/O manager. The batch size, or the lookahead
amount, is a system parameter, and offers a trade-off between fresh-
ness of active states used for AnyActive and degree to which the I/O
manager must idle while waiting for instructions on which block to
read next. We evaluate the impact of this parameter in our experi-
mental section. The lookahead process is depicted in Figure 7 for
a value of lookahead = 8. While the I/O manager processes a pre-
viously marked batch of magenta-colored lookahead blocks, the
sampling engine’s lookahead thread marks the next batch in blue.
It waits to mark the next batch until the I/O manager “catches up”.

Employing lookahead allows us to prevent two bottlenecks. First,
the sampling engine need not wait for each candidate’s active status
to update after a block is read before moving on to the next block,
effectively decoupling it from the I/O manager.

The second bottleneck prevented by lookahead is more subtle.
To illustrate it, consider the pseudocode in Algorithm 2, imple-
menting the AnyActive block policy. The AnyActive block policy
algorithm works by considering each candidate in turn, and query-
ing a bitmap index for that candidate to determine whether the cur-
rent block contains tuples corresponding to that candidate. Query-
ing a bitmap actually brings in surrounding bits into the cache of
the CPU performing the query, and evicts whatever was previously
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Algorithm 2: Naive AnyActive block processing
Input : unpruned candidate set A, block index i
Output : A value indicating whether to :read or :skip block i

1 for each active cand ∈ A do
// cache inefficient index lookup
// evicts bits from previous candidate’s bitmap index

2 if cand.index_lookup(i) then
3 return :read;
4 end
5 end
6 return :skip;

Algorithm 3: AnyActive block selection with lookahead
Input : lookahead amount, start block, unpruned candidate set A
Output : An array mark indicating whether to :read or :skip blocks

// Initialization
1 mark[i]← :skip for 0 ≤ i < lookahead;
2 for each active cand ∈ A do
3 for 0 ≤ i < lookahead do
4 if mark[i] == :read then
5 continue;
6 else if cand.index_lookup(start + i) then
7 mark[i]← :read;
8 end
9 end

10 end
11 return mark

Dataset Size #Tuples #Attributes Replications
FLIGHTS 32 GiB 606 million 7 5×

TAXI 36 GiB 679 million 7 4×
POLICE 34 GiB 448 million 10 72×

Table 2: Descriptions of Datasets
in the cache line. If blocks are processed individually, then only
a single bit in the bitmap is used each time a portion is brought
into cache. This is quite wasteful and turns out to hurt performance
significantly as we will see in the experiments. Instead, applying
AnyActive selection to lookahead-size chunks instead of individ-
ual blocks is a better approach. This simply adds an extra inner loop
to the procedure shown in Algorithm 2 (depicted in Algorithm 3).
This approach has much better cache performance, since it uses an
entire cache-line’s worth of bits while employing AnyActive.

We verify in our experiments that these optimizations allow Fast-
Match to terminate more quickly via AnyActive block selection
with fresh-enough active states without significantly slowing any
single component of the system.

4.3 System Architecture
FastMatch is implemented within a few thousand lines of C++.

It uses pthreads [59] for its threading implementation. FastMatch
uses a column-oriented storage engine, as is common for analytics
tasks. We can now complete our description of Figure 6. When
the I/O manager receives a request for a block at a particular block
index from the sampling engine (via the “block index” message), it
eventually returns a buffer containing the data at this block to the
sampling engine (via the “buffer” message). Once the I/O phase
of stage 1 or 2 of HistSim completes, the sampling engine sends
the current per-group counts for each candidate, {ri}, to the statis-
tics engine. After running a test for whether to move to stage 2
(performed in stage 1) or to terminate (performed in stage 2), the
statistics engine either posts a message of updated n′ (in stage 1)
or {n′

i} (stage 2) that the sampling engine uses to determine when
to complete the I/O phase of each HistSim stage, as well as how to
perform block selection during stage 2.

5. EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is to test the accuracy

and runtime of FastMatch against other approximate and exact ap-
proaches on a diverse set of real datasets and queries. Furthermore,
we want to validate the design decisions that we made for Fast-
Match in Section 4 and evaluate their impact.

5.1 Datasets and Queries
We evaluate FastMatch on publicly available real-world datasets

summarized in Table 2 — flight records [2], taxi trips [3], and po-
lice road stops [4]. The replication value indicates how many times

each dataset was replicated to create a larger dataset. In prepro-
cessing these datasets, we eliminated rows with “N/A” or erroneous
values for any column appearing in one or more of our queries.
FLIGHTS Dataset. Our FLIGHTS dataset, representing delays mea-
sured for flights at more than 350 U.S. airports from 1987 up to
2008, is available at [2]; we used 7 attributes (for origin / destina-
tion airports, departure / arrival delays, day of week, day of month,
and departure hour).
TAXI Dataset. Our TAXI dataset summarizes all Yellow Cab trips
in New York in 2013 [3]. The subset of data we used corresponds
with the urls ending in “yellow_tripdata_2013” in the file raw_-
data_urls.txt. We extracted some time-based discrete attributes,
two attributes based on passenger count, and one attribute based on
area, for 7 columns total. In particular, the “Location” attribute was
generated by binning the pickup location into regions of 0.01 lon-
gitude by 0.01 latitude. As with our FLIGHTS data, we discarded
rows with missing values, as well as rows with outlier longitude
or latitude values (which did not correspond to real locations). The
taxi data stressed our algorithm’s ability to deal with low-selectivity
candidates, since more than 3000 candidates have fewer than 10 to-
tal datapoints.
POLICE Dataset. Our POLICE dataset summarizes more than 8
million police road stops in Washington state [4]. We extracted at-
tributes for county, two gender attributes, two race attributes, road
number, violation type, stop outcome, whether a search was con-
ducted, and whether contraband was found, for 10 attributes total.
Queries and Query Format. We evaluate several queries on each
dataset, whose templates are summarized in Table 3. We had four
queries on FLIGHTS, FLIGHTS-q1-q4, two on TAXI, TAXI-q1-q2,
and three on POLICE, POLICE-q1-q3. For simplicity, in all queries
we test, the x-axis is generated by grouping over a single attribute
(denoted by “X” in Table 3), and the different candidates are like-
wise generated by grouping over a single (different) attribute (sig-
nified by “Z”). For each query, the visual target was chosen to cor-
respond with the closest distribution (under ℓ1) to uniform, out of
all histograms generated via the query’s template, except for q1,
q2, and q3 of FLIGHTS. Our queries spanned a number of in-
teresting dimensions: (i) frequently-appearing top-k candidates:
FLIGHTS-q1, POLICE-q1 and q2, (ii) rarely-appearing top-k can-
didates: FLIGHTS-q2 and q3, (iii) high-cardinality candidate at-
tribute Z: TAXI-q1 and q2 (|VZ | = 7641), POLICE-q3 (|VZ | =
2110), and (iv): high-cardinality grouping attribute X: FLIGHTS-
q4 (|VX | = 351). The taxi queries in particular stressed our algo-
rithm’s ability to deal with low-selectivity candidates, since more
than 3000 locations have fewer than 10 total datapoints.

5.2 Experimental Setup
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Dataset Query Z (|VZ |) X (|VX |) k target
FLIGHTS q1 Origin (347) DepartureHour (24) 10 Chicago ORD

q2 Origin (347) DepartureHour (24) 10 Appleton ATW
q3 Origin (347) DayOfWeek (7) 5 [0.25, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]
q4 Origin (347) Dest (351) 10 closest candidate to uniform

TAXI q1 Location (7641) HourOfDay (24) 10 closest candidate to uniform
q2 Location (7641) MonthOfYear (12) 10 closest candidate to uniform

POLICE q1 RoadID (210) ContrabandFound (2) 10 closest candidate to uniform
q2 RoadID (210) OfficerRace (5) 10 closest candidate to uniform
q3 Violation (2110) DriverGender (2) 5 closest candidate to uniform

Table 3: Summary of queries

Query Avg Speedup over Scan (raw time in (s))
Scan(s) ScanMatch SyncMatch FastMatch

F-q1 12.26 27.74× (0.44) 25.53× (0.48) 37.52× (0.33)
F-q2 12.29 3.17× (3.87) 2.73× (4.51) 10.11× (1.21)
F-q3 11.62 4.76× (2.44) 3.14× (3.70) 8.72× (1.33)
F-q4 13.97 5.93× (2.36) 5.76× (2.43) 8.15× (1.71)
T-q1 13.09 4.89× (2.68) 0.32× (40.95) 15.93× (0.82)
T-q2 13.09 6.48× (2.02) 0.37× (35.60) 17.38× (0.75)
P-q1 8.57 5.72× (1.50) 5.14× (1.67) 13.34× (0.64)
P-q2 8.49 14.31× (0.59) 15.48× (0.55) 36.11× (0.24)
P-q3 8.65 9.25× (0.93) 1.53× (5.66) 33.26× (0.26)

Table 4: Summary of average query speedups and latencies

Approaches. We compare FastMatch against a number of less
sophisticated approaches that provide the same guarantee as Fast-
Match. All approaches are parametrized by a minimum selectiv-
ity threshold σ, and all approaches except Scan are additionally
parametrized by ε and δ and satisfy Guarantees 1 and 2 with prob-
ability greater than 1− δ.
• SyncMatch(ε, δ, σ). This approach uses FastMatch, but the

AnyActive block selection policy is applied without lookahead,
synchronously and for each individual block. By comparing
this method with FastMatch, we quantify how much benefit we
may ascribe to the lookahead technique.

• ScanMatch(ε, δ, σ). This approach uses FastMatch, but with-
out the AnyActive block selection policy. Instead, no blocks
are pruned: it scans through each block in a sequential fashion
until the statistics engine reports that HistSim’s termination cri-
terion holds. By comparing this with SyncMatch, we quantify
how much benefit we may ascribe to AnyActive block selection.

• Scan(σ). This approach is a simple heap scan over the entire
dataset and always returns correct results, trivially satisfying
Guarantees 1 and 2. It exactly prunes candidates with selectiv-
ity below σ. By comparing Scan with our above approximate
approaches, we quantify how much benefit we may ascribe to
the use of approximation.

Environment. Experiments were run on single Intel Xeon E5-
2630 node with 125 GiB of RAM and with 8 physical cores (16
logical) each running at 2.40 GHz, although we use at most 2 logi-
cal cores to run FastMatch components. The Level 1, Level 2, and
Level 3 CPU cache sizes are, respectively: 512 KiB, 2048 KiB, and
20480 KiB. We ran Linux with kernel version 2.6.32. We report re-
sults for data stored in-memory, since the cost of main memory
has decreased to the point that most interactive workloads can be
performed entirely in-core. Each run of FastMatch or any other
approximate approach was started from a random position in the
shuffled data. We report both wall clock times and accuracy as the
average across 30 runs with identical parameters, with the excep-
tion of Scan, whose wall clock times we report as the average over
5 runs. Where applicable, we used default settings of m = 5 ·105,
δ = 0.01, ε = 0.04, σ = 0.0008, and lookahead = 1024. We
set the block size for each column to 600 bytes, which we found to
perform well; our results are not too sensitive to this choice.

5.3 Metrics
We use several metrics to compare FastMatch against our base-

lines in order to test two hypotheses: one, that FastMatch does

indeed provide accurate answers, and two, that the system architec-
ture developed in Section 4 does indeed allow for earlier termina-
tion while satisfying the separation and reconstruction guarantees.
Wall-Clock Time. Our primary metric evaluates the end-to-end
time of our approximate approaches that are variants of FastMatch,
as well as a scan-based baseline.
Satisfaction of Guarantees Guarantee 1 and Guarantee 2. Our
δ parameter (δ = 0.01), serves as an upper bound on the probabil-
ity that either of these guarantees are violated. If this bound were
tight, we would expect to see about one run in every hundred fail to
satisfy our guarantees. We therefore count the number of times our
guarantees are violated relative to the number of queries performed.
Total Relative Error in Visual Distance. In some situations, there
may be several candidate histograms that are quite close to the
analyst-supplied target, and choosing any one of them to be among
the k returned to the analyst would be a good choice. We define the
total relative error in visual distance (denoted by ∆d) between the
k candidates returned by FastMatch and the true k closest visual-

izations as: ∆d(M,M∗,q) =
∑

i∈M d(ri,q)−
∑

j∈M∗ d(r∗j ,q)∑
j∈M∗ d(r∗j ,q)

Note

that here, M∗ is computed by Scan and only considers candidates
meeting the selectivity threshold. Since FastMatch and our other
approximate variants have no recall requirements with respect to
identifying low-selectivity candidates (they only have precision re-
quirements), it is possible for ∆d < 0.

5.4 Empirical Results
Speedups and Error of FastMatch over others.

Summary. All FastMatch variants we tested show signif-
icant speedups over Scan for at least one query, but only
FastMatch shows consistently excellent performance, typically
beating other approaches and bringing latencies for all queries
near interactive levels; with an overall speedup ranging between
8× and 35× over Scan. Further, the output of FastMatch and
all approximate variants satisfied Guarantees 1 and 2 across
all runs for all queries.
Average run times of FastMatch and other approaches, for all

queries as well as speedups over Scan, are summarized in Table 4.
We used default settings for all runs. The reported speedups are the
ratio of the average wall time of Scan with the average wall time
of each approach considered. Scan was generally slower than ap-
proximate approaches because it had to examine all the data. Then,
we typically observed that ScanMatch and SyncMatch were pretty
evenly matched, with ScanMatch usually performing slightly bet-
ter, except in some pathological cases where it performed very
poorly due to poor cache usage. FastMatch had better performance
than either SyncMatch or ScanMatch, thanks to lookahead paired
with AnyActive block selection. Overall, we observed that each of
FastMatch’s key innovations: the termination criterion, the block
selection, and lookahead, all led to substantial performance im-
provements, with an overall speedup of up to 35× over Scan.

Queries with high candidate cardinality (TAXI-q*, POLICE-q3),
displayed particularly interesting performance differences. For these,
FastMatch shows greatly improved performance over ScanMatch.
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Figure 8: Effect of ε on query latency

It also scales much better to the large number of candidates than
SyncMatch, which performs extremely poorly due to poor cache
utilization and takes around 3× longer than a simple non-approximate
Scan. In this case, the lookahead technique of FastMatch is nec-
essary to reap the benefits of AnyActive block selection.

Additionally, we found that the output of FastMatch and all ap-
proximate variants satisfied Guarantees 1 and 2 across all runs for
all queries. This suggests that the parameter δ may be a loose upper
bound for the actual failure probability of FastMatch.
Effect of varying ε.

Summary. In almost all cases, increasing the tolerance parame-
ter ε leads to reduced runtime and accuracy, but on average, ∆d

was never more than 5% larger than optimal for any query,
even for the largest values of ε used.
Figures 8 and 9 depict the effect of varying ε on the wall clock

time and on ∆d, respectively, using δ = 0.01 and lookahead =
1024, averaged over 30 runs for each value of ε. Because of the
extremely poor performance of SyncMatch on the TAXI queries,
we omit it from both figures.

In general, as we increased ε, wall clock time decreased and ∆d

increased. In some cases, ScanMatch latencies matched that of
Scan until we made ε large enough. This sometimes happened
when it needed more refined estimates of the (relatively infrequent)
top-k candidates, which it achieved by scanning most of the data,
picking up lots of superfluous (in terms of achieving safe termina-
tion) tuples along the way.
Effect of varying lookahead.

Summary. When the number of candidates |VZ | is not large,
performance is relatively stable as lookahead varies. For large
|VZ |, more lookahead helps performance, but is not crucial.
For most queries, we found that latency was relatively robust to

changes in lookahead. Figure 10 depicts this effect. The queries
with high candidate cardinalities (TAXI-q*, POLICE-q3) were the
exceptions. For these queries, larger lookahead values led to in-
creased utilization at all levels of CPU cache. Past a certain point,
however, the performance gains were minor. Overall, we found the
default value of 1024 to be acceptable in all circumstances.
Effect of varying δ. In general, we found that increasing δ led to
slight decreases in wall clock time, leaving accuracy (in terms of

Query |M∗(ℓ1)∩M∗(ℓ2)|
k

Relative distance difference
FLIGHTS-q1 0.9 0.01
FLIGHTS-q2 0.7 0.04
FLIGHTS-q3 0.6 0.03
FLIGHTS-q4 0.8 0.01
Table 5: Comparison of top-closest histograms for ℓ1 and ℓ2

∆d) more or less constant. We believe this behavior is inherited
from our bound in Theorem 1, which is not sensitive to changes in
δ. Figure 11 shows the effect of varying δ on wall clock time. For
the values of δ we tried, we did not observe any meaningful trends
in ∆d and have omitted the plot.
When approximation performs poorly. In order to achieve the
competitive results presented in this section, the initial pruning of
low-selectivity candidates during stage 1 of HistSim ended up be-
ing critical for good performance. With a selectivity threshold of
σ = 0, stages 2 and 3 of HistSim are forced to consider many ex-
tremely rare candidates. For example, in the taxi queries, nearly
half of candidates have fewer than 10 corresponding datapoints. In
this case, ScanMatch performs the best (essentially performing a
Scan with a slight amount of additional overhead), but it (necessar-
ily) fails to take enough samples to establish Guarantees 1 and 2.
SyncMatch and FastMatch likewise fail to establish guarantees,
but additionally have the issue of being forced to consider many
rare candidates while employing AnyActive block selection, which
can slow town query processing by a factor of 100× or more.
Comparing results for ℓ1 and ℓ2 metrics. So far, we have not
validated our choice of distance metric (normalized ℓ1); prior work
has shown that normalized ℓ2 is suitable for assessing the “visual”
similarity of visualizations [71], so here, we compare our top-k
with the top-k using the normalized ℓ2 metric, for the FLIGHTS
queries. In brief, we found that the relative difference in the total
ℓ1 distance of the top-k using the two metrics never exceeded 4%
for any query, and that roughly 75% of the top-k candidates were
common across the two metrics. Thus, ℓ1 can serve as a suitable
replacement for ℓ2, while further benefiting from the advantages
we described in Section 2. Table 5 summarizes our full results.

6. RELATED WORK
We now briefly cover work that is related to FastMatch from a

number of different areas.
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Figure 9: Effect of ε on ∆d
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Approximate Query Processing (AQP). Offline AQP involves com-
puting a set of samples offline, and then using these samples when
queries arrive e.g., [40, 21, 5, 9, 7], with systems like BlinkDB [7]
and Aqua [6]. These techniques crucially rely on the availability
of a workload. On the other hand, online approximate query pro-
cessing, e.g., [34, 37, 53], performs sampling on-the-fly, typically
using an index to facilitate the identification of appropriate sam-
ples. Our work falls into the latter category; however, none of the
prior work has addressed a similar problem of identifying relevant
visualizations given a query.

Top-K or Nearest Neighbor Query Processing. There is a vast
body of work on top-k query processing [38]. Most of this work
relies on exact answers, as opposed to approximate answers, and
has different objectives. As an example, Bruno et al. [16] exploit
statistics maintained by a RDBMS in order to quickly find top-k
tuples matching user-specified attribute values. Some work tries
to bridge the gap between top-k query processing and uncertain
query processing [69, 65, 68, 25, 61, 23, 49, 14], but does not need
to deal with the concerns of where and when to sample to return
answers quickly, but approximately. Some of this work [69, 65,
49, 14] develops efficient algorithms for top-k or nearest neighbors
in a uncertain databases setting—here, the sampling is restricted
to monte-carlo sampling, which is very different in behavior. Sil-
berstein et al. [68] retain samples of past sensor readings to avoid
maintaining joint probability distributions in a sensor network. Co-
hen et al. [25] develops techniques to bound the probability of a
given set of items being part of the top-k. Pietracaprina et al. [61]
develops sampling schemes tailored to finding top-k frequent item-
sets. Chen et al. [23] employ sampling to determine the bounds of

a minimum bounding rectangle for top-k nearest neighbor queries.
Zhang et al. [79] performs top-k similarity search efficiently in a
network context.

Scalable Visualizations. There has been some limited work on
scalable approximate visualizations, targeting the generation of a
single visualization, while preserving certain properties [46, 60,
64]. In our setting, the space of sampling is much larger—as a
result the problem is more complex. Furthermore, the objectives
are very different. Fisher et al. [30] explores the impact of ap-
proximate visualizations on users, adopting an online-aggregation-
like [34] scheme. As such, these papers show that users are able
to interpret and utilize approximate visualizations correctly. Some
work uses pre-materialization for the purpose of displaying visu-
alizations quickly [44, 51, 55]; however, these techniques rely on
in-memory data cubes. We covered other work on scalable visual-
ization via approximation [28, 57, 43, 60, 77, 71] in Section 1.

Histogram Estimation for Query Optimization. A number of
related papers [22, 39, 41] are concerned with the problem of sam-
pling for histogram estimation, usually for estimating attribute value
selectivities [52] and query size estimation (see [24] for a recent
example). While some of the theoretical tools used are similar, the
problem is fundamentally different, in that the aforementioned line
of work is concerned with estimating one histogram per table or
view for query optimization purposes with low error, while we are
concerned with comparing histograms to a specific target.

Sublinear Time Algorithms. HistSim is related to work on sub-
linear time algorithms—the most relevant ones [12, 20, 72] fall
under the setting of distribution learning and analysis of property
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Figure 11: Effect of δ on wall clock time

testers for whether distributions are close under ℓ1 distance. Al-
though Chan et al. [20] develop bounds for testing whether distri-
butions are ε-close in the ℓ1 metric, property testers can only say
when two distributions p and q are equal or ε-far, and cannot handle
||p− q||1 < ε for p ̸= q, a necessary component of this work.

7. CONCLUSION AND FUTURE WORK
We developed sampling-based strategies for rapidly identifying

the top-k histograms that are closest to a target. We designed a gen-
eral algorithm, HistSim, that provides a principled framework to
facilitate this search, with theoretical guarantees. We showed how
the systems-level optimizations present in our FastMatch architec-
ture are crucial for achieving near-interactive latencies consistently,
leading to speedups ranging from 8× to 35× over baselines. While
this work suggests several possible avenues for further exploration,
we are particularly interested in exploring the impact of our sys-
tems architecture in supporting general interactive analysis.
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APPENDIX
A. EXTENSIONS

A.1 Generalizing Problem Description

A.1.1 SUM aggregations
While we do not consider it explicitly in this paper, in [28],

the authors describe how to perform SUM aggregations with ℓ2
distributional guarantees via measure-biased sampling. Briefly, a
measured-biased sample for some attribute Y involves sampling
each tuple t in T , where the probability of inclusion in the sam-
ple is proportional t’s value of Y . FastMatch can also leverage
measure-biased samples in order to match bar graphs generated via
the following types of queries:

SELECT X , SUM(Y) FROM T
WHERE Z = zi GROUP BY X

As in Definition 1, Z is the candidate attribute and X is the group-
ing attribute for the x-axis. One measure-biased sample must be
created per measure attribute Y the analyst is interested in, so if
there are n such attributes, we require an additional n complete
passes over the data for preprocessing. When matching bar graphs
generated according to the above template, FastMatch would sim-
ply use the measure-biased sample for Y and pretend as if it were
matching visualizations generated according to Definition 1; that
is, it would use COUNT instead of SUM. There is nothing spe-
cial about the ℓ2 metric used in [28], and the same techniques may
be used by FastMatch to process queries satisfying Guarantees 1
and 2.

A.1.2 Candidates based off arbitrary boolean predi­
cates

In order to support candidates based off boolean predicates such
as Z(1) = z

(1)
i ∧Z(2) = z

(2)
j , FastMatch needs a way to estimate

the number of active tuples in a block for the purposes of apply-
ing AnyActive block selection. In this case, simple bitmap indexes
with one bit per block are not enough. We may instead opt to use
the slightly costlier density maps from [48]. We refer readers to
that paper for a description of how to estimate the number of tuples
in a block satisfying an arbitrary boolean predicate. Even if differ-
ent candidates share some of the same tuples, our guarantees still
hold since HistSim uses a Holm-Bonferroni procedure to get joint
guarantees across different candidates at a given iteration, a method
which is agnostic to any dependency structure between candidates.

A.1.3 Multiple attributes in GROUP BY clause
In the case where the analyst wishes to use multiple attributes

X(1), X(2), . . . , X(n) to generate the support of our histograms
generated via Definition 1, all of the same methods apply, but we
estimate the support |VX | as

|VX(1) | · |VX(2) | · . . . · |VX(n) |
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This may be an overestimate if two attribute values, say x
(1)
i and

x
(2)
j , never occur together. Our guarantees still hold in this case

— overestimating the size of the support can only make the bound
in Theorem 1 looser than it could be, which does not cause any
correctness issues.

A.1.4 Handling continuous X attributes via binning
If the analyst wishes to use a continuous X , she must simply pro-

vide a set of non-overlapping bin ranges, or “buckets” in which to
collect tuples. Everything else is still the same. In fact, FLIGHTS-
q1 and FLIGHTS-q2 used this technique, since the DepartureHour
attribute was actually a continuous attribute we placed into 24 bins
(although we presented it as a discrete attribute for simplicity).

A.1.5 Handling an Unknown Candidate Domain
If the candidate domain is unknown at query time, for example

if we do not have any bitmap index structures over the attribute(s)
used to generate candidates, it is still possible to use a variant of our
methods. First of all, we may still employ ScanMatch, creating
state for new candidates as they are discovered. During stage 1 of
HistSim, in which rare candidates are pruned, we must also account
for any potential candidates for which HistSim has not yet seen any
tuples. In this case, we may simply add one additional “dummy”
candidate which matches against all the tuples for any unseen can-
didates. We add an additional test to the Holm-Bonferroni proce-
dure for this dummy candidate — if the test rejects, and if U repre-
sents the indices of the unseen candidates, then we can be sure that∑

j∈U Nj

N
< σ, which in turn implies that Nj

N
< σ for each j ∈ U .

A.1.6 Handling Continuous Candidates
If one or more of the attributes used to group candidates is con-

tinuous, then, as in the case of continuous X , candidates may be
“grouped” by placing different real-values into bins. We can also
construct bitmaps for continuous attributes at some predetermined

finest level of granularity of binning, which can then be used to in-
duce bitmaps for any coarser granularity that may be needed. Even
if the finest granularity available is too coarse to isolate different
candidates, as long as it isolates some subsets of candidates, it may
still be useful for pruning the blocks that need to be considered for
AnyActive block selection. Even if there is no index available, one
may still use ScanMatch.

A.2 Different Types of Guarantees

A.2.1 Allowing Distinct ε1 and ε2 for Guarantees 1
and 2

If the analyst believes one of Guarantees 1 and 2 is more impor-
tant than the other, she may indicate this by providing separate ε1
for Guarantee 1 and ε2 for Guarantee 2; HistSim generalizes in a
very straightforward way in this case. For example, if Guarantee 2
is more important than Guarantee 1, the analyst may provide ε1 and
ε2 with ε2 < ε1.

A.2.2 Allowing other distance metrics
We can extend HistSim to work for any distance metric for which

there exists an analogue to Theorem 1. For example, there exist
such bounds for ℓ2 distance [28, 72].

A.2.3 Allowing a range of k in input
In some cases, the analyst may not care about the exact number

of matching candidates. For example, the analyst may be fine with
finding anywhere between 5 and 10 of the closest histograms to a
target. In this case, she may specify a range [k1, k2], and Fast-
Match may return some number k ∈ [k1, k2] of histograms match-
ing the target, where k is automatically picked to make it as easy
as possible to satisfy Guarantees 1 and 2. For example, in the case
[k1, k2] = [5, 10], there may be a very large separation between
the 7th- and 8th-closest candidates, in which case HistSim can au-
tomatically choose k = 7, as this likely provides a small δupper as
soon as possible.
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