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ABSTRACT

As datasets continue to grow in size and complexity, exploringmulti-
dimensional datasets remain challenging for analysts. A common
operation during this exploration is drill-down—understanding
the behavior of data subsets by progressively adding filters. While
widely used, in the absence of careful attention towards confound-
ing factors, drill-downs could lead to inductive fallacies. Specifically,
an analyst may end up being “deceived” into thinking that a devi-
ation in trend is attributable to a local change, when in fact it is
a more general phenomenon; we term this the drill-down fallacy.
One way to avoid falling prey to drill-down fallacies is to exhaus-
tively explore all potential drill-down paths, which quickly becomes
infeasible on complex datasets with many attributes. We present
VisPilot, an accelerated visual data exploration tool that guides
analysts through the key insights in a dataset, while avoiding drill-
down fallacies. Our user study results show that VisPilot helps
analysts discover interesting visualizations, understand attribute
importance, and predict unseen visualizations better than other
multidimensional data analysis baselines.
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1 INTRODUCTION

Visual data exploration is the de facto first step in understanding
multi-dimensional datasets. This exploration enables analysts to
identify trends and patterns, generate and verify hypotheses, and
detect outliers and anomalies. However, as datasets grow in size
and complexity, visual data exploration becomes challenging. In
particular, to understand how a global pattern came about, an ana-
lyst may need to explore different subsets of the data to see whether
the same or different pattern manifests itself in these subsets. Unfor-
tunately, manually generating and examining each visualization in
this space of data subsets (which grows exponentially in the number
of attributes) presents a major bottleneck during exploration.

One way of navigating this combinatorial space is to perform
drill-downs on the space—a lattice—of data subsets. For example,
a campaign manager who is interested in understanding voting
patterns across different demographics (say, race, gender, or social
class) using the 2016 US election exit polls [1] may first generate
a bar chart for the entire population, where the x-axis shows the
election candidates and the y-axis shows the percentage of votes for
each of these candidates. In Figure 1, the visualization at the top of
the lattice corresponds to the overall population. The analyst may
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Figure 1: Example data subset lattice from the 2016 US elec-

tion dataset illustrating the drill-down fallacy along the pur-

ple path as opposed to the informative orange path.
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then use their intuition to drill down to specific demographics of
interest, say gender-based demographics, by generating bar charts
for female voters by following the purple path, as shown in the
second visualization at the second row of Figure 1, and then to
the visualization corresponding to African-American Female
voters in the third row.
ChallengeswithManualDrill-down.There are three challenges
associated with manual drill downs:
First, it is often not clear which attributes to drill-down on. Analysts
may use their intuition to select the drill-down attribute, but such
arbitrary exploration may lead to large portions of the lattice being
unexplored—leading to missed insights.
Second, a path taken by analysts in an uninformedmanner may lead
to visualizations that are not very surprising or insightful. For exam-
ple, an analyst may end up wasting effort by drilling down from
the African-American visualization to the African-American
Female one in Figure 1, since the two distributions are similar and
therefore not very surprising.
Third, an analyst may encounter a drill-down fallacy—a new class
of errors in reasoning we identify—where incomplete insights re-
sult from potentially confounding factors not explored along a
drill-down path. As shown in Figure 1, an analyst can arrive at
the African-American Female visualization via the purple or
the orange drill-down path. An analyst who followed the purple
path may be surprised at how drastically the African-American
Female voting behavior differs from that of Female. However, this
behavior is not surprising if the analyst had gone down the orange
path that we saw earlier, where the proper reference (i.e., the dis-
tribution for African-American) explains the vote distribution
for African-American Female. In other words, even though the
vote distribution for African-American Female is very differ-
ent from that of Female, the phenomenon can be explained by a
more general “root cause” attributed to the voting behavior for the
African-American community as a whole. Attributing an overly
specific cause to an effect, while ignoring the actual, more gen-
eral cause, not only leads to less interpretable explanations for the
observed visualizations, but can also lead to erroneous decision-
making. For example, for the campaign manager, this could lead to
incorrect allocation of campaign funds. To prevent analysts from
falling prey to such drill-down fallacies—consisting of misleadingly
“surprising” local deviations in trend during drill-down (Female
! African-American Female)—it is important to preserve the
proper parent reference (African-American) to contextualize the
behavior of the visualization of interest (African-American Fe-
male). One approach to avoid this fallacy is to exhaustively explore
all potential drill-down paths. Unfortunately, this approach does
not scale.

While there have been a number of statistical reasoning fallacies
that have been identified in visual analytics, including Simpson’s
paradox [5, 13], multiple comparisons [43], and selection bias [11],
to the best of our knowledge, our paper is the first to identify the
drill-down fallacy, a common fallacy that appears during manual
data exploration. There have been efforts to develop visualization
recommendation systems [24, 37] that assist or accelerate the pro-
cess of visual data exploration [6, 19–21, 33, 37, 41], none of these

systems have provided a conclusive solution to the problem of aid-
ing drill-downs to explore data subsets, while avoiding drill-down
fallacies. We discuss related work in detail in Section 7.
VisPilot with Safety, Saliency, and Succinctness. We present
a visual data exploration tool, titled VisPilot, that addresses the
three aforementioned challenges of exploration by espousing three
principles: (i) Safety (i.e., ensure that proper references are present
to avoid drill-down fallacies), (ii) Saliency (i.e., identify interesting
visualizations that convey new information or insights), and (iii)
Succinctness (i.e., convey only the key insights in the dataset).
To facilitate safety, we develop a notion of informativeness—the
capability of a reference parent visualization to explain the visual-
ization of interest. To facilitate saliency, we characterize the notion
of interestingness—the difference between a visualization and its
informative reference in terms of underlying data distribution. Fi-
nally, to facilitate succinctness, we embrace a collective measure
of visualization utility by recommending a compact connected net-
work of visualizations. Based on these three principles, VisPilot
automatically identifies a compact network of informative and in-
teresting visualizations that collectively convey the key insights in a
dataset. Our user study results demonstrate that VisPilot can help
analysts gain a better understanding of the dataset and help them
accomplish a variety of tasks. Our contributions include:
� Identifying the notion of a drill-down fallacy;
� Introducing the concept of informativeness that helps identify
insights that arise from something that holds in the data (as
opposed to confounding local phenomena);
� Extending the concept of informativeness to a measure to quan-
tify the benefit of a network of visualizations;
� Designing VisPilot, which efficiently and automatically identi-
fies a network of visualizations conveying the key insights in a
dataset; and
� Demonstrating the efficacy of VisPilot through a user study
evaluation on how well users can retrieve interesting visualiza-
tions, judge the importance of attributes, and predict unseen
visualizations, against two baselines.

2 PROBLEM FORMULATION

In this section, we first describe how analysts manually explore the
space of data subsets. We then introduce three design principles for
a system that can automatically guide analysts to the key insights.

2.1 Manual Exploration: Approach and

Challenges

During visual data exploration, an analyst may need to explore
different subsets of the data that together form a combinatorial
lattice. Figure 1 shows a partial lattice for the 2016 US election
dataset. The lattice contains the overall visualizationwith no filter at
the first level, all visualizations with a single filter at the second level
(such as Female), all visualizations with two filters at third level,
and so on. Analysts explore such a combinatorial lattice from top to
bottom, by generating and examining visualizations with increasing
levels of specificity. In particular, analysts perform drill-downs [12]
to access data subsets at lower levels by adding one filter at a time
(such as adding African-American to Female along the purple
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path) and visualize their measures of interest for each data subset�
in this case the percentage of votes for each candidate. Further, as
analysts perform drill-downs, they use the most recent visualization
in the drill-down path�the parent�as a referenceto establish what
they expect to see in the next visualization in the path�thechild.
In Figure 1, the visualizationsFemale and African-American
are theparentsof the African-American Female visualization,
explored along the purple and orange path respectively.

As we saw in the purple path in Figure 1, while performing
drill-downs, analysts may detect a local deviation (we will formal-
ize these and other notions subsequently) between a parent and a
child to be signi�cant. For example, they may be surprised by the
fact that theFemaleandAfrican-American Female visualiza-
tions are very di�erent from each other, and may �nd this to be
a novel insight. However, this deviation is a result ofFemalenot
being aninformativeparent or reference forAfrican-American
Female�instead, it is a deceptivereference. Here, a di�erent parent,
African-American , is the most informative parent or reference of
African-American Female because it is the parent that exhibits
the least deviation relative toAfrican-American Female . Here,
theAfrican-American Female visualization is not really all that
surprising given theAfrican-American visualization. We refer to
this phenomenon of being deceived by a local di�erence or devia-
tion relative to a deceptive reference as an instance of thedrill-down
fallacy. One way to avoid such fallacies is to ensure that one or
more informative parents are present for each visualization so that
analysts can contextualize the visualization accurately. While this
fallacy is applicable to any chart type that can be described as a
probability distribution over data (e.g., pie charts, heatmaps), we
will limit our discussion to bar charts for brevity.

2.2 The �3S� Design Principles
Our goal is to help analysts discover the key insights in a dataset
while avoiding drill-down fallacies. We outline three essential prin-
ciples for �nding such insights�the three S's:safety, saliency, and
succinctness, and progressively layer these principles to formalize a
measure of utility for a network of visualizations. We adopt these
principles to develop a visual exploration tool that automatically
generates a network of visualizations conveying the key insights
in a multidimensional dataset.

2.2.1 Safety.To prevent drill-down fallacies, we ensuresafety�
by making sure that informative parents are present to accurately
contextualize visualizations. A parent is said to beinformativeif
its data distribution closely follows the child visualization's data
distribution, since the presence of the parent allows the analyst to
form an accurate mental model of what to expect from the child
visualization. We compute the informativeness of thej th parent
V j

i for a visualizationVi as the similarity between their data dis-
tributions measured using a distance functionD. For bar charts,
the data distribution refers to the height of bars assigned to the
categories labeled by the x-axis, suitably normalized. Accordingly,
the computed distanceD¹Vi ;V

j
i º refers to the sum of the distances

between the normalized heights of bars across di�erent categories.
Quantifying deviation using distances between normalized versions
of visualizations in this manner is not a novel idea�we leverage
prior work for this [9, 25, 33, 37]. The speci�c distance measureD

is not important; while we use the Euclidean metric, we can easily
work with other common distance metrics such as Kullback-Leibler
Divergence and Earth Mover's distance [37]. The most informative
parentVy

i for a visualizationVi is the one whose data distribution
is most similar toVi .

Vy
i = argmin

V j
i

D¹Vi ;V
j

i º (1)

Instead of insisting that the most informative parent is always
present to contextualize a given child visualization, we relax our
requirement somewhat: we don't needthe mostinformative parent
to be present, justan informative parent. We de�ne a parent to be
informative (denotedV �

i ) if its distance from the child falls within
a threshold� %of the most informative parent�the default is set to
90% and adjustable by the user.

2.2.2 Saliency.Simply ensuring that informative parents are present
is insu�cient; we also want to emphasizesaliencyby identifying
visualizations that convey new information. In general, a visualiza-
tion is deemed to beinterestingif its underlying data distribution
di�ers from that of its parents, and thus o�ers new unexpected
information or insight. Such distance-based notions of interesting-
ness have been explored in past work [8, 18, 37], where a large
distance from some reference visualization indicates that the se-
lected visualization is interesting. We deviate from this prior work
in two ways: �rst, we concentrate oninformativeinterestingness,
where the interestingness of a child visualization is only de�ned
with respect to informative parent references. Second, we weigh
the interestingness by the proportion of the population captured by
the child visualization. (That is, when a deviation is manifested in a
larger population, it is deemed to be more signi�cant and therefore
more interesting.) Thus, we de�ne the utility of a visualizationVi ,
U¹Vi º as follows:

U¹Vi º =

( jVi j
jV �

i j � D¹Vi ;V �
i º if V �

i is present

�1 otherwise

That is, the utility or interestingness of a visualization is the distance
between the visualization and its informative parent, if present1.
To incorporate the e�ect of subpopulation size into our objective
function, we multiply the distanceD¹Vi ;V �

i º between an informa-
tive parentV �

i and a child visualizationVi by the ratio of their
sizes. Notice that the objectiveU has a minimax form [39], in that
informativeness aims to minimize the distance between parent and
child, while interestingness aims to maximize the resulting mini-
mum distance. For convenience, we de�neU¹V0º, whereV0 is the
overall visualization, to be1, which is the maximum value that
the expressionjVi j

jV �
i j � D¹Vi ;V �

i º can take, ensuring that the overall

visualization is always valuable to include.

2.2.3 Succinctness.We cannot possibly display all of the visualiza-
tions in the lattice of data subsets: this lattice scales exponentially
in the number of attributes. Instead, we aim forsuccinctness, where
we only select a subsetSof sizejSj = k from all the visualizations.
1If multiple informative parents,V �

i , are present for a given visualization,Vi , then
U ¹Vi º is de�ned in terms of the most informative parent present.
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We de�ne the utility of Sas follows:

U¹Sº =
Õ

Vi 2S

U¹Vi º

In this subset, for every visualization except for the overall visual-
ization, one of its informative parents must be present (otherwise
U = �1 ). Thus, this subset ends up being a connected network (a
sub-graph of the overall lattice) rooted at the overall visualization,
ensuring that for each visualization, there is an informative parent
available for context. We can now formally de�ne our problem
statement.

Problem. Given a dataset and user-provided X, Y attributes, select
a subsetSof jSj = k visualizations from the lattice of data subsetsL ,
such thatU¹Sº is maximized.
Thanks to how we have de�nedU, Swill include the overall visu-
alization, corresponding to the entire dataset with no �lter. And,
for each visualization inS except the overall one, at least one of
its informative parents will be present inS. This network of vi-
sualizationsS can be displayed on a dashboard. Since the edges
between non-informative parents to children are not pertinent to
the solution, we can remove those edges from the lattice, leaving
only the edges from the informative parents to the children. Then,
we are left with an arbitrary graph, from which we need to select
a rooted subgraph of sizek, with greatest utilityU. For arbitrary
distance metricsD, this problem can be viewed to beNP-Hard
via a reduction from theNP-Hard problem of selecting items with
prerequisites [30] (speci�cally, the AND graph variant). The proof
can be found in our technical report [23]. Next, we design an
approximate algorithm to solve this problem.

3 VISPILOT: OUR SOLUTION
We present our system,VisPilot , by �rst providing a high-level
overview of the underlying algorithm, and then describing the user
interaction mechanisms.

Figure 2: Example illustrating how the frontier greedy algo-
rithm incrementally builds up the solution by selecting the
node or visualization that leads to the highest gain in util-
ity from the frontier at every step. Starting from a pruned
lattice comprising only connections to informative parents
(left) and three nodes in the existing solution (blue), we se-
lect the node with the highest utility gain (yellow) amongst
the frontier nodes (green). The contribution to the utility of
a node/visualization is depicted as the number within the
node. On the right, the newly added node results in an up-
dated frontier and the node leading to the highest utility
gain is selected among them.

3.1 Lattice Traversal Algorithm
For a given dataset and user-selected X and Y axes, we �rst enu-
merate all possible attribute-value combinations (i.e., �lters) to

construct the lattice upfront. Like we described in the previous
section, we retain only the edges that correspond to informative
parents. Then, we traverse this pruned lattice to select the con-
nected subgraphSof k visualizations (or equivalently, nodes in the
lattice) that maximizes the utilityU. Our algorithm for travers-
ing the lattice, titledfrontier-greedy, is inspired by the notion of
�externals� in Parameswaran et al. [30]. The algorithm incremen-
tally grows a subgraphS0until k nodes are selected. Throughout,
the algorithm maintains a set offrontiernodesF �nodes that are
connected to the existing subgraph solutionS0 but have not yet
been added. The frontier nodes includes all of the children of the
nodes inS0. Given that our pruned lattice only retains edges be-
tween children and their informative parents, all frontier nodes
are guaranteed to have an informative parent in the the existing
solution and can be added toSwithout violating informativeness.
At each iteration, the algorithm adds the node from the frontier
nodes that leads to the greatest increase in the utility ofS0: i.e., the
nodeVn such thatU¹S0[ f Vn gºis the largest. Figure 2 displays how
the algorithm maintains the list of frontier nodes (in green), and
the currentS0 (in blue), adding the node that leads to the greatest
increase in utility (in yellow). Algorithm 1 provides the pseudocode.

Algorithm 1 Frontier Greedy Algorithm

1: procedure PickVisualizations (k, L )
2: S0  {V0} /* adding the overall node */
3: while jS0j < k do
4: F  getFrontier(S0, L )
5: bestUtility  �1
6: for Vi 2 F do
7: if U¹S0 [ f Vi gº>bestUtility then
8: maxNode Vi
9: bestUtility  U¹S0 [ f Vi gº

10: S0  S0[ {maxNode}
return S0

3.2 User Interaction
Given the visualizations inS0, we can render these visualizations
in a dashboard, where users can inspect the visualizations through
panning and zooming with navigation buttons, mouse clicks, and
key bindings. Users can also select the x and y axes of interest, aggre-
gation function, and set the number of visualizations (k) to generate
a dashboard. Figure 3 displaysVisPilot in action on the Police stop
dataset [31]. The dataset contains records of vehicle and pedestrian
stops from law enforcement departments in Connecticut, dated
from 2013 to 2015. In this case, the analyst is interested in the per-
centages of police stops (Y) that led to di�erent outcomes (X), such
as ticket, warning, or arrest. As shown in Figure 3a, the analyst may
begin by generating a 7-visualization dashboard. They would learn
that if a search is conducted (search_conducted=t ), then the
probability of being arrested increases from 6.2% to 42.1%. However,
the probability goes down to 23.1% if the driver is Asian (driver_-
race=Asian, search_conducted=t ). When examining these vi-
sualizations, the analyst can be con�dent that any deviations are
both informative and interesting: that is, the informative parents
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Figure 3: a) Overview of the VisPilot interface for the Police Stop dataset. Users can select x, y axes, and aggregation function
via the dropdown menu, to de�ne the visualization space of interest, as well as adjusting dashboard parameters, such as the
number of visualizations to show in the dashboard (k) via the sliders. b) User clicks on the duration=30+min visualization to
request 2 additional visualizations. c) A preview of the added portion of the resulting dashboard is shown.

are present for each child, making the takeaways more signi�cant.
Moreover, the analyst may learn that for drivers who had contra-
band found in the vehicle (contraband_found=t ), the arrest rate
for those who are 60 and over is surprisingly higher than usual,
whereas for Asian drivers the arrest rate is lower.

After browsing through visualizations in the dashboard, the
analyst may be interested in getting more information about a spe-
ci�c visualization. VisPilot allows analysts to perform additional
drill-downs by requesting a new dashboard centered on a chosen
visualization of interest as the new starting point (or equivalently,
the root of the lattice) for analysis. Say the analyst is now interested
in learning more about the other factor that contributes to high
arrest rates: a long stop withduration=30+min . In Figure 3b, they
can click on the corresponding visualization to request additional vi-
sualizations. Upon seeing the updated dashboard in Figure 3c, they
learn that any visualization that involves theduration=30+min
�lter is likely to result in high ticketing and arrest rates. This im-
plies that if a police stop lasts more than 30 minutes, the outcome
would more or less be the same, independent of other factors such
as the driver's race or age. To generate the expanded dashboard,
VisPilot uses the same models and algorithms as before, except
the selected visualization is set as the the overall visualizationV0 at
the root node of the new lattice. This node expansion capability is
motivated by the idea ofiterative view re�nementcommon in other
visual analytics systems, which is essential for users to iterate on
and explore di�erent hypotheses [16, 41].

4 EVALUATION STUDY METHODS
In this section, we describe the methodology for a user study we
conducted for evaluating the usefulness ofVisPilot for various ex-
ploratory analysis tasks. We aim to evaluate whetherVisPilot 's �3S�
design principles enables analysts to e�ortlessly identify insights
in comparison with conventional approaches for multidimensional
data exploration.

4.1 Participants and Conditions
We recruited 18 participants (10 Male; 8 Female) with prior expe-
rience in working with data. Participants included undergraduate
and graduate students, researchers, and data scientists, with1 � 14
years of data analysis experience (average:5:61). No participants
reported prior experience in working with the two datasets used in
the study (described below). Participants were randomly assigned
two of the three types of dashboards withk = 10visualizations
generated via the following conditions. The speci�c dashboards for
each dataset and condition can be found in our technical report [23].
VisPilot : The dashboards for this condition are generated by
the aforementioned frontier greedy algorithm and displayed in a
hierarchical layout as in Figure 3. To establish a fair comparison
with the two other conditions, we deactivated the interactive node
expansion capabilities.
BFS(short for breadth-�rst search): Starting from the visualiza-
tion of the overall population,k visualizations are selected level-
wise, traversing down the subset lattice, adding the visualizations
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